DOI QR코드

DOI QR Code

Effect of Ultrasound During Pretreatment on the Electrochemical Etching of Aluminum and Its Capacitance

초음파를 이용한 전처리가 알루미늄의 전기화학적 에칭 및 정전용량에 미치는 효과

  • Received : 2010.12.31
  • Accepted : 2011.02.09
  • Published : 2011.02.01

Abstract

Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the aluminum electrolytic capacitor electrode. Capacitance of aluminum electrolytic capacitor is closely related with surface area, which depends on size and number of etch pits. Size of etch pits need to be controlled because inside of the pits can be buried by the formation of dielectric oxide film. In this work, the effect of ultrasound pretreatment on the aluminum etch pit formation and capacitance were investigated. Additionally, the relationship between the second etching effect on pit size and capacitance was studied.

Keywords

References

  1. D. G. W. Goad and H. Uchi, J. Appl. Electrochem., 30, 285 (2000). https://doi.org/10.1023/A:1003527316173
  2. Y. Zhou and K. R. Hebert, J. Electrochem. Soc., 145, 3100 (1998). https://doi.org/10.1149/1.1838771
  3. Z. S. Smialowska, Corros. Sci., 41, 1743 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8
  4. D. Goad, J. Electrochem. Soc., 144, 1965 (1997). https://doi.org/10.1149/1.1837730
  5. R. Xiao, K. Yan, J. Yan, and J. Wang, Corros. Sci., 50, 1576 (2008). https://doi.org/10.1016/j.corsci.2008.02.017
  6. T. J. Mason, Ultrason. Sonochem., 10, 175 (2003). https://doi.org/10.1016/S1350-4177(03)00086-5
  7. L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res., 38, 1215 (1999). https://doi.org/10.1021/ie9804172
  8. P. Diodati and G. Giannini, Ultrason. Sonochem., 8, 49 (2001). https://doi.org/10.1016/S1350-4177(00)00025-0
  9. P. M. Kanthale, P. R. Gogate, A. B. Pandit, and A. M. Wilhelm, Ultrason. Sonochem., 10, 181 (2003). https://doi.org/10.1016/S1350-4177(03)00088-9
  10. K. S. Suslick and S. J. Doktycz, Advanced in sonochemistry, 1, 187 (1990).
  11. W.J. Tomlinson, Advanced in sonochemistry, 1, 173 (1990).
  12. M. L. Doche, J. Y. Hihn, A. Mandroyan, R. Viennet, and F. Touyeras, Ultrason. Sonochem., 10, 357 (2003). https://doi.org/10.1016/S1350-4177(03)00099-3
  13. H. J. Engell and N. D. Stolica, Z. Physik. Chem. N. F., 20, 113 (1959). https://doi.org/10.1524/zpch.1959.20.3_4.113
  14. L. I. Freiman and Y. Klolotyrkin, Corros. Sci., 5, 199 (1965). https://doi.org/10.1016/S0010-938X(65)80020-8
  15. M. S. Hunter and P. Fowle, J. Electrochem. Soc., 101, 81 (1954).
  16. J. Bard, Encyclopedia of electrochemistry of the elements, p. 6, New York and Basel: Marcel Dekker (1973).
  17. Y. Tak. J. Corros. Sci. Soc. of Kor., 25, 62 (1996).