• Title/Summary/Keyword: Electroless-Ni

Search Result 309, Processing Time 0.028 seconds

Electroless Nickel Plating (무전해 니켈도금에 대하여(II))

  • 지태촌;여운관
    • Journal of Surface Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

Characteristics of Nickel-Diamond Composite Powders by Electroless Nickel Plating (무전해 니켈 도금법으로 제조된 니켈-다이아몬드 복합분체의 특성)

  • ;;Hoang Tri Hai
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.224-232
    • /
    • 2004
  • Ni-diamond composite powders with nickel layer of round-top type on the surface of synthetic diamond (140/170 mesh) were prepared by the electroless plating method (EN) with semi-batch reactor. The effects of nickel concentration, feeding rates of reductant, temperature, reaction time and stirring speeds on the weight percentage and morphology of deposited Ni, mean particle size and specific surface area of the composite powders were investigated by Atomic Adsortion Spectrometer, SEM-EDX, PSA and BET. It was found that nucleated Ni-P islands, acted as catalytic sites for further deposition and grown into these relatively thick layers with nodule-type on the surface of diamond by a lateral growth mechanism. The weight percentage of Ni in the composite powder increased with reaction time, feeding rate of reductant and temperature, but decreased with stirring speed. The weight percentage of Ni in Ni-diamond composite powder was 55% at 150 min., 200 rpm and 7$0^{\circ}C$ .

Brittle Fracture Behavior of ENIG/Sn-Ag-Cu Solder Joint with pH of Ni-P Electroless Plating Solution (무전해 니켈 도금액 pH 변화에 따른 ENIG/Sn-Ag-Cu솔더 접합부의 취성파괴 특성)

  • Seo, Wonil;Lee, Tae-Ik;Kim, Young-Ho;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.29-34
    • /
    • 2020
  • The behavior of brittle fracture of electroless nickel immersion gold (ENIG) /Sn-3.0wt.%Ag-0.5wt.%Cu (SAC305) solder joints was evaluated. The pH of the electroless nickel plating solution for ENIG surface treatment was changed from 4.0 to 5.5. As the pH of the Ni plating solution increased, pin hole in the Ni-P layer increased. The thickness of the interfacial intermetallic compound (IMC) of the solder joint increased with pH of Ni plating solution. The high speed shear strength of the SAC305 solder joint on ENIG surface finish decreased with the pH of the Ni plating solution. In addition, the brittle fracture rate of the solder joint was the highest when the pH of the Ni plating solution was 5.

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 2. Effects of time of Pd activation (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 2. Pd 촉매 시간의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The reliability of solder joint is significantly affected by the property of surface finish. This paper reports on a study of high speed shear energy and failure mode for Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with the time of Pd activation. The nodule size of electroless Ni-P deposit increased with increasing the time of Pd activation. The roughness (Ra) of electroless Ni-P deposit decreased with increasing the time of Pd activation. Then, with $HNO_3$ vapor, the quasi-brittle and brittle mode of SAC405 solder joint decreased with increasing the time of Pd activation. This results indicate that the increase in the Pd activation time for Electroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface finish play a critical role for improving the robustness of SAC405 solder joint.

Fabrication and Characteristics of Electroless Ni Bump for Flip Chip Interconnection (Flip Chip 접속을 위한 무전해 니켈 범프의 형성 및 특성 연구)

  • Jeon, Yeong-Du;Im, Yeong-Jin;Baek, Gyeong-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1095-1101
    • /
    • 1999
  • Electroless Ni plating is applied to form bumps and UBM layer for flip chip interconnection. Characteristics of electroless Ni are also investigated. Zincate pretreatment is analyzed and plated layer characteristics are investigated according to variables like temperature, pH and heat treatment. Based on these observations, characteristics dependence to each variables and optimum electroless Ni plating conditions for flip-chip interconnection are suggested. Electroless Ni has 10wt% P, $60\mu\Omega$-cm resistivity, 500HV hardness and amorphous structure. It changes crystallized structure and hardness increases after heat treatment After interconnection of electroless Ni bumps by ACF flip chip method, we show their advantages and possibility in microelectronic package applications.

  • PDF

A study on adhesion strength of electroless plated deposits on Alumina substrate (Alumina substrate 상의 무전해 도금층의 밀착력에 관한 연구)

  • 조용균;안균영;박용수
    • Journal of Surface Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.187-195
    • /
    • 1991
  • Adhesion strength of electroless-plated Ni, Ni-P and Cu deposites on alumina substrate has been studied. Grain boundary spaces produced on the substrate surface by etching treatment provided anchoring sites for enhancing the adhesion strength. Adhesion strengths of Ni-P and Ni deposit were higher than that of Cu deposit, because of higher initial nucleation rates than the latter. The electroless-plated Ni-P and Ni underlayer improved the adhesion strength of the Cu deposit. In could be attributed to the enhanced adhesion between the substrate and those underlayers as well as the satisfactory adhesion between Cu deposits and those underlayers. Heat treatment was also conducted in order to enhance the adhesion strength of Cu layer. The strength was enhanced by about 19% when the treatment was conducted at $150^{\circ}C$ for 2 hours. The enhancement was attributed to relief of internal stress and release of hydrogen.

  • PDF

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.