• Title/Summary/Keyword: Electrode structure

Search Result 1,526, Processing Time 0.032 seconds

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion (링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작)

  • Sim, Yo-Sub;Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.

Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application (Shingled PV 모듈 적용을 위한 Ag Paste 저감 전극 구조 설계)

  • Oh, Won Je;Park, Ji Su;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.267-271
    • /
    • 2019
  • A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Transflective liquid crystal display with single cell gap and simple structure

  • Kim, Mi-Young;Lim, Young-Jin;Jeong, Eun;Chin, Mi-Hyung;Kim, Jin-Ho;Srivastava, Anoop Kumar;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • This work reports the simple fabrication of the single cell gap transflective liquid crystal display (LCD) using wire grid polarizer. The nano sized wire grid polarizer was patterned on common electrode itself, on the reflective part of FFS (Fringe field switching) mode whereas the common electrode was unpatterned at transmissive part. However, this structure didn't show single gamma curve, so we further improved the device by patterning the common electrode at transmissive part. As a result, V-T curve of proposed structure shows single gamma curve. Such a device structure is free from in-cell retarder, compensation film and reflector and furthermore it is very thin and easy to fabricate.

  • PDF

The Study on an Electric Noise Effect using Physical Scale Modeling (축소모형 실험을 이용한 전기적 잡음에 관한연구)

  • Yun, Jeum-Dong;Song, Young-Su;So, Kyung-Mok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.297-302
    • /
    • 2007
  • Recently, electrical resistivity survey is used in the various fields and applied to urban area with many electrical noises. Therefor it's necessary to observe the electrical noise effect of the geological structure. The physical scale modeling was conducted for measuring the electric noise effect of the two geological models at various distances, depths and diameters of the electric noise objects. The results are as following. 1. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various separated distances to the measurement line was disappeared at a half distance measurement line length regardless of electrode arrays. 2. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various depths was disappeared at 4unit apart from the measurement line regardless of electrode arrays. 3. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various diameters was disappeared at 4unit apart from the measurement line regardless of electrode arrays.

  • PDF

Effect of Cross-bar Length on Luminous Efficacy in AC-PDP with Fence Electrode Stricture

  • Nam, Hyung-Woo;Choi, Yong-Suk;Bae, Hyo-Won;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Ho-Jun;Lee, Hae-June;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.721-724
    • /
    • 2009
  • In this paper, we proposed fence electrode structures. The experimental structures change cross-bar length as 145, 105, 65 and $30{\mu}m$ to improve the electro-optical characteristics. The proposed structures improve the addressing time and luminous efficacy compared with the T145 structure which has the cross-bar length of $145{\mu}m$ as the reference. Especially, in the case of the T30 structure with cross-bar length of $30{\mu}m$, it gains lower power consumption by 34%, and higher luminous efficacy by 20% than those of the reference structure.

  • PDF

Discharge characteristics of FFL as the variation of cell structure (셀 구조 변화에 따른 FFL(Flat Fluorescent Lamp)의 방전특성)

  • 윤성현;박철현;조민정;임민수;권순석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.600-603
    • /
    • 2000
  • Recently, Display devices have become important in the information-oriented society and flat display devices are greatly demanded. Liquid crystal display(LCD) represents one of the most promising devices for large size desk-top monitors, notebook PC and car navigation system. However LCD cannot give forth light itself and must have backlight system. The most popular backlighting system is composed of a lighting-guide plate and CCFL as a lighting source. The number of CCFL must increase up if the area of display is increased. So a new backlighting source with high luminance is needed for large LCDs. In this paper, we proposed a surface discharge FFL with the new electrode structure like the needle shaped electrode as the variation of cell structure to high luminance and low power consumption. In comparison with different electrode structure it has low discharge voltage and current and good optical characteristics. So it has better discharge characteristics than different surface discharge FFL and can be fungible for a backlight as a lighting source in LCDs.

  • PDF

New Address Electrode Suitable for Fast Addressing with High Xe ac-PDP

  • Lee, Don-Kyu;Lee, Ho-Jun;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.564-567
    • /
    • 2004
  • New address electrode having separated dual electrode is suggested to reduce addressing time in ac PDP. Addressing characteristics of suggested electrode has been investigated in the test panel with high Xe partial pressure. It has been found that both the formative and jitter width of the suggested electrode is improved by 10 -20 % over the wide range of address voltage level compared with the conventional one. The dynamic margin of the panel also greatly improved. The key feature behind this type of structure is that it can extend the controllability of the wall charge distribution during the reset and address discharge without significant increase in capacitive load of address electrode.

  • PDF