Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.4.267

Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application  

Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.4, 2019 , pp. 267-271 More about this Journal
Abstract
A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.
Keywords
Solar cell; Shingled PV module; Electrode structure; Simulation; Ag paste;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Fell, K. R. McIntosh, P. P. Altermatt, G.J.M. Janssen, R. Stangl, A. Ho-Baillie, H. Steinkemper, J. Greulich, M. Muller, B. Min, K. C. Fong, M. Hermle, I. G. Romijn, and M. D. Abbott, IEEE J. Photovoltaics, 5, 1250 (2015). [DOI: https://doi.org/10.1109/JPHOTOV.2015.2430016]   DOI
2 V. Shanmugam, A. Khanna, P. K. Basu, A. G. Aberle, T. Mueller, and J. Wong, Sol. Energy Mater. Sol. Cells, 147, 171 (2016). [DOI: https://doi.org/10.1016/j.solmat.2015.12.006]   DOI
3 F. Ye, W. Deng, W. Guo, R. Liu, D. Chen, Y. Chen, Y. Yang, N. Yuan, J. Ding, Z. Feng, P. P. Altermatt, and P. J. Verlinden, Proc. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (IEEE, Portland, USA, 2016) p. 3360.
4 N. Wohrle, T. Fellmeth, E. Lohmuller, P. Baliozian, A. Fell, and R. Preu, Proc. 33rd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC, Amsterdam, Netherlands, 2017) p. 844. [DOI: https://doi.org/10.4229/EUPVSEC20172017-2CV.2.33]
5 M. Mittage, T. Zech, M. Wiese, D. Blasi, M. Ebert, and H. Wirth, Proc. 44th IEEE Photovoltaic Specialists Conference 2017 (IEEE, Washington, USA, 2017).
6 N. Klasen, A. Mondon, A. Kraft, and U. Eitner, Proc. 7th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells, 2017 (Constance, Germany, 2018). [DOI: https://doi.org/10.2139/ssrn.3152478]
7 H. Jee, S. Lee, C. Jeong, and J. Lee, J. Nanosci. Nanotechnol., 19, 1360 (2019). [DOI: https://doi.org/10.1166/jnn.2019.16200]   DOI
8 J. Wong, Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, Tampa, USA, 2013) p. 0933. [DOI: https://doi.org/10.1109/PVSC.2013.6744296]
9 P. Saint-Cast, S. Werner, J. Greulich, U. Jager, E. Lohmuller, H. Hoffler, and R. Preu, Phys. Status Solidi A, 214, 1600708 (2016). [DOI: https://doi.org/10.1002/pssa.201600708]   DOI
10 F. Book, A. Dastgheib-Shirazi, B. Raabe, H. Haverkamp, G. Hahn, and P. Grabitz, Proc. 24th European Photovoltaic Solar Energy Conference (EU PVSEC, Hamburg, Germany, 2009) p. 1719. [DOI: https://doi.org/10.4229/24thEUPVSEC2009-2CV.5.3]