• Title/Summary/Keyword: Electrode pattern design

Search Result 40, Processing Time 0.03 seconds

Enhancement of the Bright Room Contrast Ratio in a Plasma Display Panel (플라스마 디스플레이 패널에서 명실 콘트라스트 개선)

  • Moon, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • A new electrode structure in a plasma display panel was designed in a way to increase the bright room contrast ratio (BRCR). The area of the black matrix pattern to get a low reflection from the panel surface was enlarged using the new electrode design concept. The electrical characteristics such as firing voltage, voltage margin and power consumption were measured. The luminance of the panel was measured and the luminous efficiency was calculated. It was found that the new electrode structure was very effective to enhance the BRCR.

A Finite-element Method of a Multilayer Piezoelectric Body for an Actuator Depending on Inner Electrode Pattern (내부전극패턴 변경에 따른 적층형 압전 액추에이터의 유한요소해석)

  • Lee, Hyeung-Gyu;Kang, Hyung-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1124-1128
    • /
    • 2005
  • New piezoelectric actuator design, which can reduce the number of the stacking layer without lowering the piezoelectric displacement, is suggested in this work. Each layer of the new designed multilayer actuator has the same electrode pattern as the cross-sectioned layer of the existing multilayer actuator has. The piezoelectric displacement was calculated by Finite-Element Method (FEM) analysis. The maximum piezoelectric displacement of the new-designed actuator with 13 layers was calculated to be almost same value (55.9 ${\mu}m$) as that of the existing actuator with 25 layers(60.1 ${\mu}m$).

Optimized electrode design to improve transmittance in the Patterned Vertical Alignment Liquid Crystal Display

  • Hwang, Seong-Jin;Kim, Youn-Sik;Lee, Seung-Hee;Lyu, Jae-Jin;Kim, Kyeong-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.549-552
    • /
    • 2007
  • Patterned vertical alignment (PVA) mode requires multi-domain to exhibit wide viewing angle whereas the transmittance is sacrificed. To overcome the demerit, a fine pattern was formed at folded region in PVA Z-shape electrode structure. In the present work fine patterns were formed near domain boundary regions where the unwanted field direction which causes the LC to tilt down in unwanted direction exists. Thereby transmittance is improved near those fine patterns. This method is very simple and more cost-effective process than the other methods. In this article, we show the method of fine pattern formation and its influence on LC molecule in PVA mode with Z-shape electrode structure.

  • PDF

Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application (Shingled PV 모듈 적용을 위한 Ag Paste 저감 전극 구조 설계)

  • Oh, Won Je;Park, Ji Su;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.267-271
    • /
    • 2019
  • A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

Effect of Different Front Metal Design on Efficiency Affected by Series Resistance and Short Circuit Current Density in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 전면 전극의 패턴에 따른 전류 밀도 및 특성 저항 변화에 대한 영향과 효율 변화)

  • Jeong, Sujeong;Shin, Seunghyun;Choi, Dongjin;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.518-523
    • /
    • 2017
  • In commercial solar cells, the pattern of the front electrode is critical to effectively assemble the photo generated current. The power loss in solar cells caused by the front electrode was categorized as four types. First, losses due to the metallic resistance of the electrode. Second, losses due to the contact resistance of the electrode and emitter. Third, losses due to the emitter resistance when current flows through the emitter. Fourth, losses due to the shading effect of the front metal electrode, which has a high reflectance. In this paper, optimizing the number of finger on a $4{\times}4$ solar cell is demonstrated with known theory. We compared the short circuit current density and fill factor to evaluate the power loss from the front metal contact calculation result. By experiment, the short circuit current density($J_{sc}$), taken in each pattern as 37.61, 37.53, and $37.38mA/cm^2$ decreased as the number of fingers increased. The fill factor(FF), measured in each pattern as 0.7745, 0.7782 and 0.7843 increased as number of fingers increased. The results suggested that the efficiency(Eff) was measured in each pattern as 17.51, 17.81, and 17.84 %. Throughout this study, the short-circuit current densities($J_{sc}$) and fill factor(FF) varied according to the number of fingers in the front metal pattern. The effects on the efficiency of the two factors were also investigated.

Study and Fabrication of Transparent Electrode Film by using Thermal-Roll Imprinted Ag Mesh Pattern and Coated Conductive Polymer (열형-롤 각인으로 형성한 Ag 격자 패턴과 전도성 고분자 코팅을 이용한 투명전극 필름 제작에 관한 연구)

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Do-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.11-15
    • /
    • 2010
  • In this study, to fabricate a low-resistance and high optical transparency electrode film, the following steps were performed: the design and manufacture of electroforming stamp, the fabrication of a thermal roll-imprinted polycarbonate (PC) patterned films, the filled low-resistance Ag paste using doctor blade process on patterned PC films and spin coating by conductive polymers. As a result of PC films imprinted line width of $26.69{\pm}2\;{\mu}m$, channel length of $247.57{\pm}2\;{\mu}m$, and pattern depth of $7.54{\pm}0.2\;{\mu}m$. Ag paste to fill part of the patterned film with conductive polymer coating and then the following parameters were obtained: a sheet resistance of $11.1\;{\Omega}/sq$ optical transparency values at a wavelength of 550 nm was 80.31 %.

Design of Crosstalk Compensation Circuit in TFT-LCDs (박막트랜지스터 액정표시소자의 화소간섭 보상회로설계)

  • 정윤철;박종철;김이섭
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1374-1382
    • /
    • 1995
  • In TFT-LCDs, as the display size area becomes larger, and the resolution higher, we have to consider the image degradation effects due to the incorporation of the TFT-LCD parameters such as the data-line resistance, the common electrode resistance, the data-line to common parasitic capacitance, and the output characteristics of driver ICs. One of the degradation effects is crosstalk resulting from the coupling between the source bus-line and common electrode. Since a source signal which represents a large number of display data is supposed to vary frequently, the common signal level is affected through the coupling effect, resulting in the degradation of nearby pixel drive signals. Therefore, we proposed a method to compensate for this source-common electrode coupling effect, we also designed and experimented the feasibility of our crosstalk compensation circuit in the actual TFT-LCD. We saw that the newly designed compensation circuit greatly reduced the crosstalk in display pattern image.

  • PDF