• Title/Summary/Keyword: Electrode life

Search Result 294, Processing Time 0.031 seconds

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

Electrochemical Characteristics of $LaNi_5$ Electrode Fabricated by Ni and Cu Electroless Plating Techniques (Ni 및 Cu무전해 도금법에 의해 제조한 $LaNi_5$ 전극의 전기화학적 특성)

  • Yi Su Youl;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • The effect of electroless Ni and Cu plating on $LaNi_5$, $AB_5$ type hydrogen storage alloy was investigated by the various electrochemical techniques such as constant current charge-discharge test, cyclic voltammeoy, and a.c. impedance spectroscopy. Scanning electron microscopy and X-ray diffraction test were conducted for phenomenological logical analyses. Cyclic Voltammetry results show that activation characteristics, cycle life and reaction ,rate were improved through electroless Ni and Cu plating. Compared with bare $LaNi_5$ the charge transfer resistance of electrode was greatly reduced as charge-discharge cycle increases. Therefore, electroless Ni and Cu plating on $LaNi_5$ alloy tends to accelerate the early activation, increasing the cyclic lift of electrode.

V-t and Barrier Characteristics for HTS Transformer Insulation Design (고온초전도변압기 절연설계를 위한 격벽효과와 수명특성)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kim, Young-Seok;Kwak, Dong-Soon;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.61-64
    • /
    • 2003
  • In the response to an increasing demand for electrical energy, much effort aimed to develop and commercialise HTS power equipments is going on around the world. For the development, it is necessary to establish the dielectric technology in $LN_2$. Hence many types of dielectric tests should be carried out to understand the dielectric phenomena at cryogenic temperature and to gather various dielectric data. Among the many types dielectric tests, the barrier effect were conducted with the simulated electrode after analysing the insulating configuration of the pancake coil type HTS transformer. The influence of a barrier on the dielectric strength was measured according to the size and the position of the barrier. It was shown that the effectiveness, the ratio of the breakdown voltage in presence of barrier to the voltage without barrier, is highest when the barrier is placed at the needle electrode side. And the barrier effect was not depend on the electrode array. The life time to breakdown with decreasing the applied voltage was increased remarkably having wide error band but the shape parameter in Weibull distribution was almost constant.

  • PDF

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi;Li, Botao;Zhang, Bochao;Wang, Yang;Yang, Xu;Ye, Han;Xia, Zhijie;Zheng, Guoxu
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.384-391
    • /
    • 2020
  • Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.

Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1 (5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1)

  • Kim, Jin-Gyeong;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

Characteristics of Nonthermal Plasma Source in Various Liquids

  • Lim, Seung-Ju;Min, Boo-Ki;Taylor, Nathan;Kim, Tae-Gyu;Kim, Hyeong-Seok;Yang, Seon-Pil;Jung, Jin-Yong;Han, Jin-Hyun;Lee, Jong-Yong;Kang, Seung-Oun;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.259.1-259.1
    • /
    • 2014
  • Recently non-thermal plasma has been frequently applied to various research fields. The liquid plasma have received much attention lately because of interests in surgical and nanomaterial synthesis applications. Especially, intensive researches have been carried out for non-thermal plasma in liquid by using various electrode configurations and power supplies. We have developed a bioplasma source which could be used in a liquid, in which outer insulator has been covered onto the outer electrode. Also we have also put an insulator between the inner and outer electrode. Based on the surface discharge mode, the nonthermal bioplasma has been generated inside a liquid by using an alternating current voltage generator with peak voltage of 12 kV under driving frequency of 22 KHz. Here the discharge voltage and current have been measured for electrical characteristics. Especially, We have measured discharge and optical characteristics under various liquids of deionized (DI) water, tap water, and saline by using monochromator. We have also observed nitric oxide (NO), hydrogen peroxide (H2O2), and hydroxyl (OH) radical species by optical emission spectroscopy during the operation of bioplasma discharge inside various kinds of DI water, tap water, and saline. Here the temperature has been kept to be $40^{\circ}C$ or less when discharge in liquid has been operated in this experiment. Also we have measured plasma temperature by high speed camera image and density by using either H-alpha or H-beta Stark broadening method.

  • PDF

Supercapacitive Properties of Carbon-Nano Fiber/MnO2 Composite Electrode (나노탄소섬유/MnO2 복합전극의 초고용량 캐폐시터 특성)

  • Lee, Byung Jun;Yoon, Yu Il;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.94-98
    • /
    • 2008
  • In order to improve the specific capacitance of amorphous hydrous manganese oxide ($MnO_2$) for supercapacitors, it is made into composites with vapour-grown carbon nanofibers (VGCF) having the VGCF ratio as 40 wt% in the composites. The electrochemical properties of these composites are investigated in 1.0 M $Na_2SO_4$ by cyclic voltammetry (CV), impedance measurements and chronopotentiometric charger/discharger. The composite with 40 wt% VGCF shows the superior electrochemical performance, whose specific capacitance (based on the mass of $MnO_2$, $0.8mg/cm^2$) is 380 F/g at 20 mV/s and 230 F/g at 500 mV/s. Also, the cycle-life testing of this electrode carried out for 3,000 charge/discharge cycles at $2.0mA/cm^2$ shows 97% capacitance retention.

Immobilization of a Mediator onto Carbon Cloth Electrode and Employment of the Modified Electrode to an Electroenzymatic Bioreactor

  • Jeong, Eun-Seon;Sathishkumar, Muthuswamy;Jayabalan, Rasu;Jeong, Su-Hyeon;Park, Song-Yie;Mun, Sung-Phil;Yun, Sei-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1406-1411
    • /
    • 2012
  • 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical $NAD^+$-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic $NAD^+$ regeneration was coupled to the conversion of L-glutamate into ${\alpha}$-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by ${\alpha}$-ketoglutarate. However, our electrochemical $NAD^+$ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.

Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method (기계적 합금화법에 의한 실리콘계 복합물질의 전지전극특성)

  • Lee, Churl-Kyoung;Lee, Jong-Ho;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.