Browse > Article
http://dx.doi.org/10.4150/KPMI.2009.16.6.389

Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method  

Lee, Churl-Kyoung (School of Materials and System Engineering, Kumoh National Institute of Technology)
Lee, Jong-Ho (TM Tech)
Lee, Sang-Woo (School of Materials and System Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Powder Materials / v.16, no.6, 2009 , pp. 389-395 More about this Journal
Abstract
A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.
Keywords
Battery electrode; Si composite; Copper oxide; Graphite; Mechanical alloying;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. O. Besenhard, J. Yang and M. Winter: J. Power Source, 69 (1997) 87   DOI   ScienceOn
2 J. O. Besenhard(Ed), Handbook of Battery Materials, Wiley-VCH, Weinheim, Part III, Ch. 4 (1999)
3 L. Y. Beaulieu, K. C. Hewitt, R. L. Turner, A. Bonakdarpour, A. A. Abdo, L. Christensen, K. W. Eberman, L. J. Krause and J. R. Dahn: J. Electrochem. Soc., 150 (2003) A149   DOI   ScienceOn
4 H. Azuma, H. Imoto, S. I. Yamada and K. Sekai: J. Power Sources, 1 (1999) 81   DOI   ScienceOn
5 J. Yang, M. Winter and J. O. Besenhard: Solid State Ionics, 90 (1996) 281   DOI   ScienceOn
6 J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie and Z. S. Wen: Electrochem. Solid-State Lett., 6 (2003) A154   DOI   ScienceOn
7 I. S. Kim and P. N. Kumta: J. Power Sources, 136 (2004) 145   DOI   ScienceOn
8 B. C. Kim, H. Uono, T. Sato, T. Fuse, T. Ishihara and M. Senna: Solid State Ionics, 135 (2000) 181   DOI   ScienceOn
9 Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano and Y. Takeda: Electrochem. Solid-State Lett., 7 (2004) A369   DOI   ScienceOn
10 J. J. Niu and J. Y. Lee: Electrochem. Solid-State Lett., 5 (2002) A107   DOI   ScienceOn
11 S. M. Hwang, H. Y. Lee, S. W. Jang, S. M. Lee, S. J. Lee, H. K. Baik, and J. Y. Lee: Electrochem. Solid-State Lett., 4 (2001) A97   DOI   ScienceOn
12 Z. Chen, V. Chevrier, L. Christensen and J. R. Dahn: Electrochem. Solid-State Lett., 7 (2004) A310   DOI   ScienceOn
13 T. D. Hatchard and J. R. Dahn: J. Electrochem. Soc., 151 (2004) A1628   DOI   ScienceOn
14 H. S. Kim, J. H. Choi, H. J. Sohn and T. Kang: J. Electrochem. Soc., 146 (1999) 4401   DOI   ScienceOn
15 G. A. Roberts, E. J. Cairns and J. A. Reimer: J. Power Sources, 110 (2002) 424   DOI   ScienceOn
16 A. Cros, M. O. Aboelfotoh and K. N. Tu: J. Appl. Phys., 67 (1990) 3328   DOI
17 P. Zuo and G. Yin: J. Alloys and Compounds, 414 (2006) 265   DOI   ScienceOn
18 M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov and Z. Ogumi: J. Electrochem. Soc., 149 (2002) A1598   DOI   ScienceOn
19 N. Dimov, K. Fukuda, T. Umeno, S. Kugino and M. Yoshio: J. Power Sources, 114 (2003) 88   DOI   ScienceOn
20 R. D.Thomson and K. N. Tu: Appl. Phys. Lett., 41 (1982) 440   DOI
21 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J-M. Tarascon: Nature, 407 (2000) 496   DOI   ScienceOn
22 S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont and J. M. Tarascon: J. Electrochem. Soc., 149 (2002) A627   DOI   ScienceOn
23 J. O. Besenhard(Ed), Handbook of Battery Materials, Wiley-VCH, Weinheim, Part III, Ch. 6 (1999)
24 M. O. Aboelfotoh and L. Krusin-Elbaum: J. Appl. Phys., 70 (1991) 3382   DOI