• Title/Summary/Keyword: Electrode density

Search Result 1,171, Processing Time 0.03 seconds

Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance (아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조)

  • An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.505-510
    • /
    • 2019
  • Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.

Impact of Current Density, Operating Time and pH of Textile Wastewater Treatment by Electrocoagulation Process

  • Hossain, Md. Milon;Mahmud, Md. Iqbal;Parvez, Md. Shohan;Cho, Haeng Muk
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Treatment of textile wastewater by the electrocoagulation (EC) process is being investigated by this experimental study. The objective of this experiment is to observe the efficiency of the EC process in removing chemical oxygen demand (COD) and turbidity. In this experiment an iron electrode is used in the EC process, and different working parameters such as pH, current density and operating time were studied in an attempt to achieve a higher removal capacity. The results show that the maximum COD removal occurred at neutral pH at operating time 30 min. COD and turbidity removal reaches at maximum, with optimum consumption of electrodes, between current density 85-95 $A/m^2$, and only trace amounts of metals were determined in the EC treated effluent.

A Study on the Process Condition of Electropolishing for Stamping Leadframe (스탬핑 리드프레임의 전해 연마 가공조건에 관한 연구)

  • 신영의;김경섭;김헌의;류기원;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.983-988
    • /
    • 2000
  • The leadframe of thin plate fabricated by stamping method generates a lot of burr and stress in the processing surface because of the mold. The electropolishing equipment was produced in order to increase accuracy and surface roughness for 42%Ni-Fe leadframe. An electrolyte consisted of phosphoric acid, ethylene glycol and deionized water. Experiments were accomplished as polishing conditions were changed such as current density, polishing time, electrode gap and sample shape. The burr from the cutting was eliminated and surface characteristics of high flatness and high luster wre obtained after electropolishing. In addition, the electroplishing had good characteristic in 1.0 A current density and 4㎜ of electrode spaces, and it was affected by the composition of electrolyte and the sample shape.

  • PDF

A Study on New High Density DRAM Cell (고밀도 DRAM Cell의 새로운 구조에 관한 연구)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.124-130
    • /
    • 1989
  • For the higher density DRAM'S, innovations in fabrication process and circuit design which have led to dramatic density improvement are discussed from the desinger's perspective. A new dynamic RAM cell called Trench Epitaxial Transistor Cell(TETC) using trench technics and SEG have been developed for use in future megabit DRAMS. Storge electrode with $n^+$-polysilicon and $n^+$-source electrode are self-contacted in TETC. With keeping the storage capacitance large enough to prevent soft errors, the cell size reduced to 30% compare with existing BSE cell by utilizing the vertical capacitor made along the isolation region.

  • PDF

High Efficiency Ozone Generation Using a Pyramid-Project-Embossed Rod-to-Cylinder Electrode and a Pulse Corona Discharge (도깨비봉형 오존발생장치이 펄스커로나 방전에 의한 오존 발생 특성)

  • 문재덕;이근택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.650-657
    • /
    • 1989
  • The conversion efficiency of an ozone generator can be significantly improved by modifying the discharge electrode of a helical strip line rod-to-cylinder type ozone generator to a pyramid-project-embossed rod, and by using a pulse corona discharge. Parametric studies have been carried out to obtain optimum values of peak pulse voltage, pulse forming capacitance, feeder cable and ozone generator capacitance, interelectrode spacing and corona tip density of ozone generator, and feed air flow rate and temperature. The generated ozone concentration was very dependent upon the value of pulse forming capacitance, feeder cable and ozone generator capacitance, and corona tip density. Maximum conversion efficiency was obtained with a pulse forming capacitance of about 500pF, 75pF matched feeder cable and ozone generator, and a corona tip density of 16mm. When operated at optimum values, ozone yield of 79, 99, 80 g/KWh for the different interelectrode type ozone generators tested were obtained, which are approximately 30% higher than that of an industrial ozone generator.

  • PDF

Analysis of the Electromagnetic Phenomena in Vacuum Interrupter with Axial Magnetic Field Type (축자계형 진공인터럽터의 전자계 현상 해석)

  • 하성철;서상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.952-957
    • /
    • 2003
  • The purpose of this paper is analyses about in 12kV/50kA vacuum interrupter with an axial magnetic field type electrode system through the studies of electromagnetic phenomena. Vacuum interrupter is important in electric safety part. In this paper, we performed analysis of electric field, magnetic field, current density in AMF electrode using the Maxwell 3D simulation. The current distribution and magnetic field in simple models are analyzed to verify its efficiency and accuracy. In addition the validity of FEM is confirmed by performing the analyses of distribution in current density and magnetic flux density.

A Study on Wastewater Treatment by Electrochemical Treatment with Various Electrode Interval (전극 간격에 따른 전기화학적 처리를 통한 폐수처리에 관한 연구)

  • Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.417-423
    • /
    • 2019
  • A new wastewater treatment system was developed to remove nitrate nitrogen and phosphorus in synthetic wastewater through electrochemical treatment. Higher removal efficiencies of nitrate nitrogen were obtained as the current density increased. Higher nitrate removal efficiencies were obtained when the switching interval was 1 min. The total phosphorus removal rate according to the current density was found to be over 90% without being greatly affected by the change in current density and interval, and the total removal rate increased with increasing switching time (1 min interval). On the other hand, COD was not treated by electrochemical treatment, but rather increased as the electrode eluted. Also, the consumption rate of the electrode was smaller as the switching interval was shorter. Finally, removal efficiencies of 98.1% of nitrate and 90% of phosphorus were obtained through electrochemical treatment (current density $50mA/cm^2$, switching interval 1 min, flow rate 540 mL/min).

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

The Treatment of Textile Wastewater by Electrocoagulation Process (전해응집공정을 이용한 염색폐수의 처리)

  • 이용택;한승우;조영개;이현문;김태근;손인식;양병수
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.359-363
    • /
    • 2000
  • This research studied the characteristics and applicability of electrocoagulation using aluminium electrode for the color and COD removal in textile wastewater. Electrocoagulation reactor used two different electrode, Fe and Al, since in the general chemical wastewater treatment, aluminium and ferrous salts were used as coagulants. Aluminium electrode showed higher removal efficiency of color and COD than ferrous electrode did. The COD and color removal efficiency improved at the 0.192A/$dm^2$ current density. Thus, the electrocoagulation process with bipolar aluminium electrode showed better efficiency in the decolorization and COD removal rate of textile wastewater effluent than custom coagulants did.

  • PDF