• Title/Summary/Keyword: Electrode System

Search Result 1,768, Processing Time 0.032 seconds

Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme (다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안)

  • Lee, Seok-Young;Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

Electrochemical Treatment of Dyeing Wastewater using Insoluble Catalyst Electrode (불용성 촉매전극을 이용한 염색폐수의 전기화학적 처리)

  • Um, Myeong-Heon;Ha, Bum-Yong;Kang, Hak-Chul
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.133-144
    • /
    • 2003
  • In this study, Insoluble catalyst electrode for oxide systems were manufactured, by using of them, carried out experiments on electrolytic treatment of dyeing wastewater containing persistent organic compounds, and then made a comparative study of the efficiency of treatment for environmental pollutants and whether each of them is valuable of not as an electrode for soluble electrode(Fe, Al) and insoluble electrode(SUS, R.C.E; Replaced Catalyst Electrode) which were used in the electrolytic system. Besides, it was investigated the conditions for electrolytic treatment to find the maximum efficiency of electrolytic treatment. As the result of this study, by using of insoluble catalyst electrode for oxide can solved the stability of electrode that is one of the greatest problems in order to put to practical use of electrolysis process in the treatment of the sewage and wastewater and the result runs as follows; 1. The durability of insoluble catalyst electrode(R.C.E) can be verified the most favorable when the molar ratio of $RuO_2-SnO_2-IrO_2-TiO_2$(4 compounds system) is 70/20/5/5. 2. The efficiency of treatment was obtained a more than 90% goodness for CODMn and also a good results for T-N removal in the experimental conditions of the distance of electrode 5 mm, time of electrolysis 60 minutes, permissible voltage 10V, processing capacity $0.5{\ell}$.

  • PDF

[O2/N2] Plasma Etching of Acrylic in a Multi-layers Electrode RIE System (다층 RIE Electrode를 이용한 아크릴의 O2/N2 플라즈마 건식 식각)

  • Kim, Jae-Kwon;Kim, Ju-Hyeong;Park, Yeon-Hyun;Joo, Young-Woo;Baek, In-Kyeu;Cho, Guan-Sik;Song, Han-Jung;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.642-647
    • /
    • 2007
  • We investigated dry etching of acrylic (PMMA) in $O_2/N_2$ plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % $O_2$ composition in the $N_2/O_2$ plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% $O_2$ in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about $0.2{\mu}m/min$ to over $0.4{\mu}m/min$ when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm $O_2/4\;sccm\;N_2$ gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % $O_2$ composition in the $O_2/N_2$ plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both $N_2$ peak (354.27 nm) and $O_2$ peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.

Permanent Transvenous Endocardial Pacemaker Inevitably Implanted Two Electrode Leads (두개의 전극도자를 사용하게 된 Permanent Transvenous Pacemaker Implantation: 1례 보고)

  • Kwack, Moon-Sub;Lee, Hong-Kyun
    • Journal of Chest Surgery
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 1981
  • Since cardiac pacemaker was first totally implanted by Chardack, Gage and Greatbatch [1966], the electrical circuity of the cardiac pacemaker has been improved, modified, and refined. The problem of transvenous electrodes, however, is still remained; this may be due to electrode displacement, exit and/or entrance block, lead fracture and insulation defects. In permanent cardiac pacing, Irreversible loss of function of the transvenous electrode catheter eventually requires insertion of new lead. Authors now report one case that disclosed easy displacement of electrode tip in early phase of implantation and then two years and five months later, malfunctioning electrode could not be withdrawn from the cardiovascular system because it has become firmly enclosed by fibrous tissue along its course from the vein tract to the right ventricle. Under such circumstances, the electrode catheter tip was left in tricuspid annulus after being sutured at its entrance and burying the loop of lead in generator pocket. New other one electrode was then reimplantation through left external jugular vein.

  • PDF

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG) (수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Yang, Heui-Koung;Shin, Kun-Su;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

A study on the Potential Detection System of Gas Insulated Switchgear (가스절연개폐장치의 전위감지 시스템에 대한 연구)

  • Choi, Seung-Kil;Baek, Seung-Kook;Kim, Kwang-Ho;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2284-2286
    • /
    • 1999
  • This paper describes the development of potential detection system in 22.9kV gas insulated switchgear. This system composed with main system and LPS can detect the source voltage by capacitive potential division which is accomplished by inserting signal electrode between main electrode and earthed metal enclosure of the switchgear. The appropriate position of signal electrode is achieved by numerical analysis using finite element method. The developed potential detection system is verified by several tests such as voltage test, swc test and others and by applicaion at site. From the results, it is concluded that potential detection system is very reliable and available to operate the switchgear safely.

  • PDF