• Title/Summary/Keyword: Electrode Installation

Search Result 287, Processing Time 0.019 seconds

A Study on the Temperature Measurement Using Optical Emission in Saline Solution Discharge with Pin to Plate Electrodes (염류용액 방전의 온도 측정에 관한 연구)

  • Kim, Joong Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • In this study, electrical and spectroscopic characteristics were investigated in the pin to plate discharge of 0.9% weight per unit volume saline solution. The positive and positive- and negative-going dc pulse with 5% duty ratio were applied to tungsten pin electrode. The more amount of discharge current flew in negative discharge. The temperature, which is considered as a local value in the vicinity of vapor of discharge, was about 3,000K which is much higher than the value recommended to be controlled. It can be suggested that not only the temperature of liquid but also the local temperature of vapor is monitored to investigate damages on tissue or cells in biological application.

Modeling of Two-dimensional Self-consistent RF Plasmas on Discharge Chamber Structures (전극 구조에 관한 2차원 RF 플라즈마의 모델링)

  • So, Soon-Youl;Lim, Jang-Seob;Kim, Chel-Woon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • Plasma researches using parallel-plate electrodes are widely used in semiconductor application such as etching and thin film deposition. Therefore, a quantitative understanding and control of plasma behavior are becoming increasingly necessary because their important applications and simulation techniques have been actively carried out in order to solve such problems above. In this paper, we developed a two-dimensional(2D) self-consistent fluid model, because 2D models can deal with real reactor geometries. The fluid model is based on particle continuity equations for taking account of an electrode system in a cylindrical geometry. An pure Ar gas was used at 500[mTorr] and radio-frequency (13.56(MHz)). Four models were simulated under the different electrode geometries which have chamber widths of 5.25, 6.0, 8.0, and 10.0[cm] and we compared their results with each other. Plasma uniformity and a do self-bias voltage were also discussed.

Discharge Characteristics of Logic Gate for Discharge Logic Gate Plasma Display Panel (방전 논리게이트 플라즈마 디스플레이 패널의 논리게이트 방전특성)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.9-15
    • /
    • 2005
  • In this research the discharge characteristics of logic gate of the discharge logic gate plasma display panel with the NOT-AND logic function newly designed was analyzed. As for this discharge logic gate a logical output is induced by controlling the voltage between the electrodes using the discharge path. From the experimental result the discharge characteristics of logic gate is influenced by the interrelation of the voltages appling two vertical electrodes. To in the application possibility to large screen PDP, the discharge characteristics by the line resistance of the electrode was evaluated In result it has been inferred that the influence which the drop of voltage by the line resistance of two vertical electrodes exerts on the discharge of the logic gate is minute. Through the experiment, the optimized values of the pulse voltages and the current limitation resistances of each electrode which composed the discharge logic gate were obtained and maximum operation margin of 49[V] was obtained.

Flashover Characteristics of the Horizontal Air Gaps Caused by Combustion Flames (연소화염에 의한 수평배치 공기갭의 섬락전압 특성)

  • 김인식;김이국;김충년;지승욱;이상우;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • In this paper, characteristics of the ac and dc flashover voltage in the horizontal air gap of a needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrode. In order to examine the flashover phenomena and the corona inception voltages caused by flame we measured the voltage and current waveforms when the corona and the flashover was occurred. We also observed, as increasing the applied voltages, the deflection or fluctuation phenomena in the shape of flames caused by the corona wind and the coulomb's force. As the results of an experimental investigation, we found that the reduction of flashover voltages, in comparison with the no-flame case, are 62.7[%] for k=1.0, 34.2[%] for h=5[cm], 27.3[%] for h=7[cm] and 21.4[%] for h=9[cm] when ac voltage is applied.

A Study on the New Discharge Logic Device for the Plasma Display Panels (플라즈마 디스플레이 패널을 위한 새로운 방전 논리소자에 관한 연구)

  • 염정덕;정영철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • The plasma display panel with the electrode structure of new discharge AND gate was proposed and the driving system for experiment was developed. And discharge AND gate operation was verified. Discharge AND gate operated by the operation speed of 8${\mu}\textrm{s}$ and the operation margin of 20V. It was known to be able to control the discharge of the adjoining scan electrode accurately. Because this method uses the DC discharge, the control of the discharge can be facilitated compared with conventional discharge AND gate. Moreover, because the input discharge and the output discharge of AND gate are separate, the display discharge can be prevented from passing AND gate. Therefore it is possible to app1y to the large screen plasma display. And the decrease of contrast ratio does not occur because the scanning discharge does not influence the picture quality.

Transient Grounding Impedance Characteristics of a Concrete Rod-type Grounding Electrode used for Electric Distribution Systems (배전계통에 사용되는 콘크리트봉 접지전극의 과도 접지임피던스 특성)

  • Kim, Kyung-Chul;Kim, Jong-Uk;Lee, Kyu-Jin;Choi, Jong-Ki;Choi, Sun-Kyu;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2010
  • Grounding insures a reference potential point for electric devices and also provides a law resistance path for fault or transient currents in the earth. The grounding impedance as a function of frequency is necessary for determining its performance since fault or transient currents could contain a wide range of frequencies. A concrete rod electrode is one of the commonly used grounding electrodes in electric distribution systems. In this paper, the grounding impedance of concrete rods has been measured in frequency raging from 60[Hz] up to 100[kHz] and an equivalent model of the grounding impedance is identified from the measured values. The grounding impedance under study when a typical lightning surge is injected into the grounding system was simulated numerically and graphically through the use of the EDSA software program.

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

The Delay-Time Characteristics of DC Discharge in the Discharge Logic Gate Plasma Display Panel (방전논리게이트 플라즈마 디스플레이 패널의 직류방전 지연특성)

  • Ryeom, Jeong-Duk;Kwak, Hee-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • In this research, the characteristics of the DC discharge that was the logical gate input of discharge logic gate PDP newly proposed was considered. The logical output is induced by controlling the potential difference of inter-electrode according to the discharge path in the discharge logic gate. From the experimental result the discharge time lag was shortened to 1/3 and the voltage has decreased to 1/2 in the case to apply priming discharge for improving stability of these DC discharges compared with the case when it is not applied. Moreover, after the priming discharge ends, the space charge generated by this discharge influences it up to about $30[{\mu}s]$. And, as a measured result of the influence that the space charge exerts on the DC discharge with the change in time and spatial distance, it has been understood that there is a possibility that going away spatially can slip out the influence of the discharge easily as for going away from the discharge time-wise. Therefore the conclusion that the discharge logic gates of each scanning electrode can be operated independently is obtained.

Breakdown Characteristics of Soils Caused by Impulse Currents (임펄스전류에 의한 토양의 절연파괴특성)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, Hoe-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.103-109
    • /
    • 2010
  • In this paper, breakdown characteristics of soil in a coaxial cylindrical electrode system stressed by impulse currents were experimentally investigated. The breakdown voltage and current waveforms for 4 types of soils were measured, and the threshold electric field intensity, the time-lag to breakdown and the voltage-current (V-I) curves were analyzed and discussed. As a result, the breakdown voltage and current waveforms are strongly dependent on the grain size of soil, and the voltage and current waveforms for gravel and sand differ from those for silt and loess. The threshold electric field intensity Ec is increased in the order of gravel, sand, loess and silt. The V-I curves for all test samples show a 'cross-closed loop' of ${\infty}$-shape. Also, the time-lag to breakdown for gravel and sand are longer than those for silt and loess. It is expected that the results presented in this paper will provide useful information on the design of improving transient performance of a grounding electrode system subjected to lightning current considering the soil ionization.

Electrical Conduction Mechanism of AZO Thin Film and Photo-Electric Conversion Efficiency of Film-Typed Dye Sensitized Solar Cell (AZO 박막의 전기전도특성 및 필름형 염료 태양전지의 광전 변환 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.66-72
    • /
    • 2010
  • In this paper, AZO thin film was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method from a ZnO target mixed with 2[wt%] Al2O3. The flexible film-typed dye sensitized solar cell(F-DSC) was fabricated and photo-electric conversion efficiency was investigated. The results showed that the minimum resistivity and the maximum deposition rate of AZO conducting film were recorded as $1.8{\times}10^{-3}[{\Omega}{\cdot}cm]$ and 25.5[nm/min], respectively at r.f. power of 220[W]. From the analysis of XPS data an improvement of electrical resistivity or an increase in carrier concentration with increasing sputtering power may be related to the generation of lattice imperfections as a result of increasing component ratio of O1s/Zn2p, which generates donor carriers or active growth of crystalline grain. The photo-electric conversion efficiency of F-DSC with AZO conducting electrode was over 2.79[%], which was comparable as that with commercially available ITO electrode.