• Title/Summary/Keyword: Electroconductive

Search Result 70, Processing Time 0.035 seconds

Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성)

  • Ju, Jin-Young;Lee, Hui-Seung;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Park, Jin-Hyoung;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]

Preparation and Characterization of the Multi-functional Complex Utilizing PCB Powder (PCB Powder를 이용한 다기능 복합체의 제조 및 특성)

  • Park, Byoung Ki
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • The feasibility of recycling wasted printed circuit board (PCB) is investigated by preparing PCB added flame retardant composites filled with either unsaturated polyester or polyurethane. In order to improve electroconductive properties, copper powder was added into the composites, which results also in improving their antistatic properties. The prepared composite samples showed a binding between the polymer fillers observed by a scanning microscope. The sample group using unsaturated polyester is elastomeric that led to appreciable elongation and elasticity. In case of polyurethane, the tensile strength increased proportionally as increase of the amount of PCB powder. The composite materials can be utilized as antistatic composite materials, since the surface resistivity result showed increase of the electroconductive properties by adding Cu. The flammability of the samples is not satisfactory according to UL-94 vertical test. However, the flame retardant properties were improved by adding PCB power. This study, therefore, showed that it is feasible to fabricate polymer composite materials and improve the material characteristics by adding PCB powder, which can replace existing additives used for the preparation of polymer composite materials and can reduce the environment contamination by recycling the wasted PCB.

Electrical Resistivity and Fracture Toughness of SiC-ZrB2

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.400-403
    • /
    • 1999
  • The mechanical and electrical properties of hot-pressed and annelaed $\beta$-SiC+39vol.% $ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$(6:4 wt%). In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$ grains were observed between $\beta$-SiC and $ZrB_2$. The properties of the $\beta$-SiC+39vol.%$ZrB_2$ composites with 4wt% $Al_2O_3+Y_2O_3$ at R.T. are as follows: fracture toughness is 6.37 MPa.m1/2, electical resistivity is $1.51\times10^{-4}\Omega \cdot\textrm{cm}$ and the relative density is 98.6% of the theoretical density. The fracture toughness of the $\beta$-SiC+39 vol.% $ZrB_2$ composites were weakly decreased with increasing amount of $Al_2O_3+Y_2O_3$ additives. Internal stresses due to the difference of $\beta$-SiC and $ZrB_2$ thermal expansion coefficient and elastic modulus mismatch appeared to contribute to fracture toughening in $\beta$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites.

  • PDF

A Study on The Optimal Design of SiC Ceramic Heater (SiC계 세라믹 발열체의 최적 설계에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1631-1634
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System (액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Development of Electroconductive SiC-$ZrB_2$ Ceramic Heater and Electrod by Spark Plasma Sintering (SPS에 의한 SiC-$ZrB_2$계 전도성 세라믹 발열체 및 전극 개발)

  • Shin, Yong-Deok;Ju, Jin-Young;Kim, Jae-Jin;Lee, Jung-Hoon;Kim, Cheol-Ho;Choi, Won-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1254_1255
    • /
    • 2009
  • The composites were fabricated by adding 30, 35, 40, 45[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis. The relative density of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are 88.64[%], 76.80[%], 79.09[%] and 88.12[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are $6.74{\times}10^{-4}$, $4.56{\times}10^{-3}$, $1.92{\times}10^{-3}$ and $4.95{\times}10^{-3}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ are Positive Temperature Coefficient Resistance(hereafter, PTCR) in temperature ranges from 25[$^{\circ}C$] to 500[$^{\circ}C$]. It is convinced that SiC+40[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode.

  • PDF

The preparation of electroconductive Nylon/Spandex stretch fabric (I) - Changes of conductivity with extension (전도성 Nylon/Spandex 스트레치 직물의 제조(I) - 신장에 따른 전도도의 변화)

  • 박현진;오경화;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.314-315
    • /
    • 2001
  • 전기 전도성 고분자는 폴리 아세틸렌을 적절한 electron withdrawing group이나 electron donating group을 이용하여 도핑하면 전도도의 증가를 가져온다는 보고 이래로 활발하게 연구되어져 왔다. 그 중에서 폴리피롤은 높은 전도도와 산화안정성, 인체에 무해한 특성 때문에 여러 분야에 응용되고 있으며 분자전자장치나 고체 배터리의 전극, 축전기의 고체 전해질, 전자파 차폐 재료, ion센서, 위장막의 제조 등의 용도전개 잠재력이 무궁하다. (중략)

  • PDF

Electrical Properties of Electroconductive Paints with Carbon Black (카본블랙 전도성 도료의 전기적 특성)

  • Lee, Seung-Hyeop;Choe, Jong-Un;Gang, Gye-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.116-117
    • /
    • 2007
  • 카본블랙을 충전제로 사용하여 전도성도료를 제작하였으며 충전제의 양과 그리고 도료가 도포된 두께에 따른 전기적 특성을 조사하였다. 충전제의 양이 많아질수록 박막의 저항값은 지수적으로 감소하였으며 박막의 두께가 증가함에 따라 저항값이 감소하였다. 이러한 박막내 충전제의 증가와 박막두께의 변화에 따른 전기전도도의 변화에 대해 조사하였다.

  • PDF

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF