• Title/Summary/Keyword: Electrochemical test

Search Result 739, Processing Time 0.027 seconds

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

Electrochemical Measurement of Salt Content in Soysauce and Margarine (간장 및 마가린중의 식염함량의 전기화학적 측정법)

  • Lee, Jong-Hyeok;Lee, Byeong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.105-108
    • /
    • 1993
  • A new devised conductivity meter was used in the rapid and convenient determination of salt contents of soysauce and margarine. The equation $(1){\sim}(5)$ was set up between the electric conductivity (x) for 100 times diluted solution of soysauce and the salt contents (y). y=0.083x-1.253 $(at\;15^{\circ}C)$ (1) y=0.077x-2.062 $(at\;20^{\circ}C)$ (2) y=0.071x-2.686 $(at\;25^{\circ}C)$ (3) y=0.066x-3.153 $(at\;30^{\circ}C)$ (4) y=0.062x-3.522 $(at\;35^{\circ}C)$ (5) y=(-0.001139t+0.0999)x+(-0.126t+0.557) $(temperature\;range;\;15{\sim}35^{\circ}C)$ (6) y=salt contents [%], x=conductivity $[{\mu}{\Omega}^{-1}{\cdot}cm^{-1}]$, $t=temp.\;[^{\circ}C]$. The salt contents could be estimated by the equation $(1){\sim}(6)$ and the measured conductivity. The estimated salt contents agreed with that determined by conventional method within 0.27[%] as salt contents. For margarine, the equation (7) was setup between the conductivity (x) and the salt contents (y) y=0.00266x+0.057 $(at\;20^{\circ}C)$ (7) y=salt contents [%], x=conductivity $[{\mu}{\Omega}^{-1}{\cdot}cm^{-1}]$ The salt contents estimated with the equation (7) and the measured condutivity agreed with that determined by conventional method within 0.028[%] as salt contents. The electric conductivity obtained with conductivity meter could be a valuable criteria salt contents test of Korean soysauce and margarine determining in a few second or minute by handy compact portable meter.

  • PDF

Bioequivalence of Burophil Capsule to Surfolase Capsule (Acebrophylline 100 mg) (설포라제 캡슐(아세브로필린 100 mg)에 대한 부로필 캡슐의 생물학적 동등성)

  • Cho, Hea-Young;Park, Eun-Ja;Kang, Hyun-Ah;Kim, Se-Mi;Park, Chan-Ho;Oh, In-Joon;Lim, Dong-Koo;Lee, Myung-Hee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • Acebrophylline is a compound produced by salifying ambroxol with theophylline-7 -acetic acid. After acebrophylline administration, the salt splits into these two components which feature a peculiar pharmacokinetic behavior, an adequate ambroxol and a low theophylline-7-acetic acid serum levels. The purpose of the present study was to evaluate the bioequivalence of two acebrophylline capsules, Surfolase (Hyundai Pharm. lnd. Co., Ltd.) and Burophil (Kuhnil Pharm. Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of ambroxol from the two acebrophylline formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty eight healthy male subjects, $23.25{\pm}1.43$ years in age and $64.82{\pm}6.77$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two capsules containing 100 mg as acebrophylline were orally administered, blood was taken at predetermined time intervals and the concentrations of ambroxol in serum were determined using HPLC with electrochemical detector (ECD). The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug Surfolase, were -1.64, -3.33 and -0.92% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 $(e.g., \;log\;0.93{\sim}log\;1.05\;and\;log\;0.88{\sim}log\;1.05$ for $AUC_t$, and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Burophil capsule was bioequivalent to Surfolase capsule.

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.