• Title/Summary/Keyword: Electrochemical performances

Search Result 280, Processing Time 0.023 seconds

Electrochemical Properties of Natural Graphite coated with PFO-based Pitch for Lithium-ion Battery Anode (리튬이차전지 음극용 석유계 피치로 코팅된 천연 흑연의 전기화학적 특성)

  • Kim, Geun Joong;Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.672-678
    • /
    • 2019
  • The electrochemical properties of pitch-coated natural graphite(NG) were investigated as an anode for lithium-ion batteries. The anode materials were prepared by heat-treatment of mixture of NG and petroleum pitch at $1000^{\circ}C$. The pitches with various softening points were used as carbon precursor. The physical properties of anode materials were analyzed by TGA, SEM, PSA and BET. As the softening point increased, the thickness of the coating layer increased and the specific surface area decreased. The electrochemical performances were investigated by initial charge/discharge efficiency, cycle stability, cyclic voltammetry, rate performance and electrochemical impedance spectroscopy. The carbon-coated NG using pitch with softening points of $250^{\circ}C$ showed an initial discharge capacity of 361 mAh/g and a coulombic efficiency of 92.6%. Also, the rate performance(5 C/0.2 C) was 1.6 times higher than that of NG, and it had a capacity retention (90%) after 50 cycles at 0.5 C.

Comparative Studies on Ammonium Ion Selective Electrodes Using Poly(Vinyl Chloride) and Polyurethane as Substrate Matrix Materials (Poly(Vinyl Chloride)와 Polyurethane을 지지체로 사용한 암모늄이온 선택성 전극의 특성비교)

  • Cho Chang-Ae;Park Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.148-154
    • /
    • 2004
  • Ammonium ion selective electrodes have been prepared using nonactin as an ionophore and poly(vinyl chloride) (PVC) or polyurethane(PU) as a polymer matrix with or without a plasticizer, bis(2-ethylhexyl) adipate, and their performances have been evaluated. The reults indicate that PU-based electrodes can be designed to perform better although PVC-based electrodes generally show better performances. In efforts to explain the obervation, we also carried out atomic force microscopy as well as impedance studies, and the results suggests that islands of ion-ophores are formed in the PVC membranes through which ion transfers appear to be more facile than through the PU membranes. The PU membranes appear to have ionophores better dispersed throughout the film and are more resistive to ion mobilities in comparison to PVC films.

Cycling Performances of Lithium-Ion Polymer Cells Assembled with Surface-Modified Separators Containing Aluminum Fluoride (불화 알루미늄을 포함하는 표면 개질된 분리막으로부터 제조되는 리튬이온폴리머전지의 싸이클 특성에 관한 연구)

  • Eo, Seung-Min;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Rechargeable lithium-ion polymer batteries have been considered to be next-generation power sources for portable electronic devices and electric vehicles. In this work, we tried to improve the cycling performances of lithium-ion polymer cells by coating aluminum fluoride and acrylonitrile-methyl methacrylate copolymer to the polyethylene separator. It was found that the addition of aluminum fluoride to the surface-modified separator reduced the interfacial resistances and thus the cell exhibited a less capacity fading and better high rate performance. The cell showed an initial discharge capacity of 150 mAh/g and good capacity retention at 0.5 C rate.

Electrochemical Performances of LiMn2O4:Al Synthesized by Solid State Method (고상법으로 합성한 LiMn2O4:Al의 전기화학적 특성)

  • Park, Hye-Jung;Park, Sun-Min;Roh, Gwang-Chul;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Al doped $LiMn_2O_4$ ($LiMn_2O_4:Al$) synthesized by several Al doping process and Solid State method. The Al contents in $Mn_{1-x}Al_xO_2$ for $LiMn_2O_4:Al$ were analyzed 1.7 wt% by EDS. The $LiMn_2O_4:Al$ confirmed cubic spinel structure and approximately 5 ${\mu}m$ particles regardless of three kinds of doping process by solid state method. In the result of electrochemical performances, initial discharge capacity had 115 mAh/g in case of $LiMn_2O_4$ and 111 mAh/g of $LiMn_2O_4:Al$ after 100th cycle at room temperature. But the capacity retention results showed that $LiMn_2O_4$ and $LiMn_2O_4:Al$ were 44% and 69% respectively in the 100th cycle at 60$^{\circ}C$. Therefore we are confirmed that $LiMn_2O_4:Al$ increased the capacity retention about 25% than $LiMn_2O_4$, thus the effect of Al dopping on $LiMn_2O_4$ capacity retention.

Redox Stability and Electrochemical Performances of La0.6Sr0.4Fe1-xScxO3-δ for Solid Oxide Cells Interconnector (고체산화물전지 접속자용 La0.6Sr0.4Fe1-xScxO3-δ의 상 안정성 및 전기화학 성능)

  • KWAK, MINJUN;CHOI, HYUN-JONG;KIM, TAE WOO;SEO, DOO-WON;WOO, SANG-KUK;KIM, SUN-DONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.274-279
    • /
    • 2018
  • Sc-substituted $La_{0.6}Sr_{0.4}FeO_{3-{\delta}}$(LSFSc) has synthesized for ceramic interconnector of tubular solid oxide cells (SOCs). For improving the redox stability and electric conductivity of LSFSc, the compositions of Sc, pH value of mixed precursors, calcination temperature and times were optimizing. The electrochemical performances of $La_{0.6}Sr_{0.4}Fe_{1-x}Sc_xO_{3-{\delta}}$ powders were measured as depending on Sc composition. The electric conductivity and redox stability of $La_{0.6}Sr_{0.4}Fe_{1-x}Sc_xO_{3-{\delta}}$ was determined by Sc concentration. $La_{0.6}Sr_{0.4}Fe_{0.9}Sc_{0.1}O_{3-{\delta}}$ powders can be one of the stable composition for ceramic interconnector of tubular-SOCs.

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Highly stabilized microstructure and excellent electrochemical performances of Ni-rich LiNi0.9Co0.05Mn0.05O2 cathode via La modification (La 개질을 통한 Ni-rich LiNi0.9Co0.05Mn0.05O2 양극재의 고도로 안정화된 미세구조 및 우수한 전기화학적 성능)

  • Seung-Hwan, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Although the mileage of electric vehicles can be increased based on the excellent energy density of the LiNi0.9Co0.05Mn0.05O2, it is known that the reason for limiting its use is the low lifespan and poor surface stability due to the structural deformation of the LiNi0.9Co0.05Mn0.05O2. To improve the structural stability of LiNi0.9Co0.05Mn0.05O2, electrochemical performance is improved by La coating on the surface. La-modified LiNi0.9Co0.05Mn0.05O2 shows an initial capacity of 210.6 mAh/g, a capacity retention rate of 89.9 % after 50 cycles, and a retention rate of 52.5% at 6.0 C. These are superior performances than the pristine sample, because the structural stability of the LiNi0.9Co0.05Mn0.05O2 cathode is improved by the La coating.

Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning (전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능)

  • Youn, Jae Woong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.439-445
    • /
    • 2022
  • In this study, Silicon and petroleum pitch were coated on the surface of Si/C fiber manufactured using electrospinning to improve the electrochemical performances. SiO2/PAN fiber was prepared by electrospinning with TEOS and PAN at various ratios dissolved in DMF. The characteristics of carbonization, reduction, and pitch coating processes were investigated for the optimal process of the pitch coated Si/C fiber anode composite. Anode composite prepared with TEOS/PAN = 4/6 (CR-46) after carbonization and reduction process has a capacity of 657 mAh/g. To improve capacity and stability, Si powder and PFO pitch were coated at the surface of CR-46. When the pitch composition was fixed at 10 wt%, it was found that the capacity increased as the weight ratio of silicon increased, but the stability decreased. The pitch coated Si/C fiber composite with 10 wt% silicon has high capacity of 982.4 mAh/g and capacity retention of 86.1%. In the test to evaluate rate performance, the rate capability was 80.2% (5C/0.1C).