• Title/Summary/Keyword: Electrochemical catalyst

Search Result 340, Processing Time 0.032 seconds

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Electrochemical Promotion of Pt Catalyst for The Oxidation of Carbon Monoxide

  • Shin, Seock-Jae;Kang, An-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.187-195
    • /
    • 2000
  • Electrochemical promotion of the reaction rate was investigated for CO oxidation in a solid electrolyte catalytic reactor where a thin film of Pt was deposited on the yttria stabilized zirconia as an electrode as well as a catalyst. It was shown under open circuit condition that potential was a mixed potential of $O_2$exchange reaction and electrochemical reaction induced by CO. The effect of electrochemical modification on the CO oxidation rate was studied at various overpotentials and $P_{CO}$$P_{O2}$.

  • PDF

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao;Ilwhan Oh
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.2
    • /
    • pp.19-34
    • /
    • 2023
  • Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • Kim, Kun-Ho;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell (탄소계 복합담지체에 담지된 고내구성 고분자전해질 연료전지용 백금촉매)

  • Park, Hyang Jin;Hur, Seung Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • A Pt catalyst ($Pt/G_xC_y$) supported on the hybrid supporting materials composed of graphene oxide (GO) and carbon black (C) was fabricated using polyol method to improve the durability of electrocatalysts. The electrochemical performances measured by cyclic voltammograms using three-electrode system revealed that the properly designed $Pt/G_xC_y$ catalyst exhibited higher durability than that of Pt/C catalyst without sacrificing an electrocatalytic acivity. In the oxygen reduction reaction (ORR) performed in acid solution with the rotating disk electrode, the $Pt/G_xC_y$ catalyst showed greater mass and area-specific activity than those of Pt/C catalyst.

Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions (EDLC 전극용 카본에어로젤의 합성조건에 따른 기공구조 및 전기화학적 특성)

  • Seo, Hye Inn;Jung, Ji Chul;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.50-61
    • /
    • 2018
  • Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from $NaHCO_3$ and $KHCO_3$ with $H^+$ ions had higher specific surface areas but exhibited lower electrochemical properties than those from $K_2CO_3$ and $Na_2CO_3$, which had more uniform pore size distributions. The electrochemical properties of $Na_2CO_3$ were superior to those of $K_2CO_3$ probably because the polarizing power of $Na^+$ ions was higher than $K^+$ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.18 no.11
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.