DOI QR코드

DOI QR Code

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao (Department of Applied Chemistry (Department of Energy Convergence Engineering) Kumoh National Institute of Technology) ;
  • Ilwhan Oh (Department of Applied Chemistry (Department of Energy Convergence Engineering) Kumoh National Institute of Technology)
  • Received : 2023.02.01
  • Accepted : 2023.03.19
  • Published : 2023.05.31

Abstract

Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.

Keywords

Acknowledgement

This research was supported by the academic research fund from the Kumoh National Institute of Technology (202002280001).

References

  1. N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-Exchange Membrane Water Electrolyzers, Chemical Reviews, 122(13), 11830 (2022).
  2. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(12), 4901 (2013).
  3. W. T. Grubb, Batteries with Solid Ion Exchange Electrolytes I. Secondary Cells Employing Metal Electrodes, J. Electrochem. Soc., 165(4), 275 (1959)
  4. W. T. Grubb, IONIC MIGRATION IN IONEXCHANGE MEMBRANES, J. Phys. Chem., 63(1), 59 (1959).
  5. P. Medina and M. Santarelli, Analysis of water transport in a high pressure PEM electrolyzer, Int. J. Hydrogen Energy, 35(11), 5173 (2010).
  6. K. E. Ayers et al., Research Advances towards Low Cost, High Efficiency PEM Electrolysis, ECS Trans, 33(1), 3 (2010).
  7. R. H. Mitchell and R. R. Keays, Abundance and distribution of gold, palladium and iridium in some spine1 and garnet Iberzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle, Geochemica et Cosmochimica Acta, 45(12), 2425 (1981).
  8. L. B. Hunt, A History of Iridium Overcoming the Difficulties of Melting and Fabrication, Platinum Metals Rev., 31(1), 32 (1987).
  9. S. J. Parry, Abundance and Distribution of Palladium, Platinum, Iridium and Gold in Some Oxide Minerals, Chemical Geology, 43, 115 (1984).
  10. B. Huang and Y. Zhao, Iridium-based electrocatalysts toward sustainable energy conversion, EcoMat, 4(2), 2022.
  11. J. Chen, S. Jayabal, D. Geng, and X. Hu, Monolayer Iridium Nanoparticles Coated TiO2 Core-Shell Architecture as Efficient Oxygen Evolution Reaction Electrocatalyst, Chemistry Select, 6(34), 9134 (2021).
  12. M. H. Miles and M. A. Thomason, Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies, ECS, 123(10), 1459 (1976).
  13. D. Galizzioli, F. Tantardini, and S. Trasatti, Ruthenium dioxide: A new electrode material. I. Behaviour in acid solutions of inert electrolytes, J. Applied Electrochemistry, 4, 57 (1974).
  14. M. Tahir et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review, Nano Energy, 37, 136 (2017).
  15. S. Cherevko, A. R. Zeradjanin, A. A. Topalov, N. Kulyk, I. Katsounaros, and K. J. J. Mayrhofer, Dissolution of noble metals during oxygen evolution in acidic media, Chem. Cat. Chem., 6(8), 2219 (2014).
  16. T. Reier, H. N. Nong, D. Teschner, R. Schlogl, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts, Adv. Energy Mater, 7(1), 1601275 (2017).
  17. C. He, Corrosion-Resistant Non-Carbon Electrocatalyst Supports for Corrosion-Resistant Non-Carbon Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells Proton Exchange Membrane Fuel Cells, PhD Dissertation, Washington University in St. Louis, Missouri, USA (2019).
  18. L. Moriau, M. Bele, Z. Marinko, F. Ruiz-Zepeda, G. K. Podborsek, M. Sala, A. K. Surca, J. Kovac, I. Arcon, P. Jovanovic, N. Hodnik, and L. Suhadolnik, Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles, ACS Catal, 11(2), 670 (2021).
  19. L. Du, Y. Shao, J. Sun, G. Yin, J. Liu, and Y. Wang, Advanced catalyst supports for PEM fuel cell cathodes, Nano Energy, 29, 314 (2016).
  20. H. Chhina, S. Campbell, and O. Kesler, An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells, J. Power Sources, 161(2), 893 (2006).
  21. C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner, and F. J. Disalvo, Sol-gel synthesis, electrochemical characterization, and stability testing of Ti0.7W0.3O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells, J. Am. Chem. Soc., 132(49), 17531 (2010).
  22. S. Y. Huang, P. Ganesan, and B. N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal B, 102(1-2), 171 (2011).
  23. S. Y. Huang, P. Ganesan, S. Park, and B. N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc., 131(39), 13898 (2009).
  24. V. T. T. Ho, C. J. Pan, J. Rick, W. N. Su, and B. J. Hwang, Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction, J. Am. Chem. Soc., 133(30), 11716 (2011).
  25. P. Goswami and J. N. Ganguli, Tuning the band gap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos, Dalton Transactions, 42(40), 14480 (2013).
  26. L. Li, W. Yang, Y. Ding, and X. Zhu, First principle study of the electronic structure of hafnium-doped anatase TiO2, J. Semiconductors, 33(1), 012002-1 (2012).
  27. J. H. Kim, G. Kwon, H. Lim, C. Zhu, H. You, and Y. T. Kim, Effects of transition metal doping in Pt/M-TiO2 (M = V, Cr, and Nb) on oxygen reduction reaction activity, J. Power Sources, 320, 188 (2016).
  28. C. Beauger, L. Testut, S. Berthon-Fabry, F. Georgi, and L. Guetaz, Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: A comparative study of Nb, v and Ta dopants, Microporous and Mesoporous Materials, 232, 109 (2016).
  29. S. Sun, G. Zhang, X. Sun, M. Cai, and M. Ruthkosky, Highly stable and active Pt/Nb-TiO2 carbon-free electro-catalyst for proton exchange membrane fuel cells, J. Nanotechnol, (2012).
  30. L. Chevallier, A. Bauer, S. Cavaliere, R. Hui, J. Roziere, and D. J. Jones, Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes, ACS Appl. Mater Interfaces, 4(3), 1752 (2012).
  31. A. Bauer, L. Chevallier, R. Hui, S. Cavaliere, J. Zhang, D. Jones, and J. Roziere, Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells, Electrochim. Acta, 77, 1 (2012).
  32. H. A. Huy, B. Aradi, T. Frauenheim, and P. Deak, Comparison of Nb- and Ta-doping of anatase TiO2 for transparent conductor applications, J. Applied Physics, 112(1), 016103 (2012).
  33. S. L. Gojkovic, B. M. Babic, V. R. Radmilovic, and N. V. Krstajic, Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs, J. Electroanalytical Chemistry, 639(1-2), 161 (2010).
  34. T. B. Do, M. Cai, M. S. Ruthkosky, and T. E. Moylan, Niobium-doped titanium oxide for fuel cell application, Electrochimica Acta, 55(27), 8013 (2010).
  35. K. W. Park and K. S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells, Electrochem. commun, 9(9), 2256 (2007).
  36. A. Kumar and V. Ramani, Ta0.3Ti0.7O2 Electrocatalyst Supports Exhibit Exceptional Electrochemical Stability, J. Electrochem Soc., 160(11), F1207 (2013).
  37. C. P. Lo, G. Wang, A. Kumar, and V. Ramani, TiO2-RuO2 electrocatalyst supports exhibit exceptional electrochemical stability, Appl. Catal B, 140-141, 133 (2013).
  38. X. Li, Z. Guo, and T. He, The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance, Physical Chemistry Chemical Physics, 15(46), 20037 (2013).
  39. R. Alipour Moghadam Esfahani, S. K. Vankova, A. H. A. Monteverde Videla, and S. Specchia, Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction, Appl. Catal B, 201, 419 (2017).
  40. F. Hegge F. Lombeck, E. C. Ortiz, L. Bohn, M. v. Holst, M. Korschel, J. Hubner, M. Breitwieser, P. Strasser, and S. Vierrath, Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers, ACS Appl Energy Mater, 3(9), 8276 (2020).
  41. Y. Liu and W. E. Mustain, Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction, ACS Catal, 1(3), 212 (2011).
  42. Y. Liu and W. E. Mustain, Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts, Int. J. Hydrogen. Energy, 37(11), 8929 (2012).
  43. D. v. Esposito and J. G. Chen, Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations, Energy Environ. Sci., 4(10), 3900 (2011).
  44. N. Cheng, M. N. Banis, J. Liu, A. Riese, S. Mu, R Li, T. K. Sham, and X. Sun, Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts, Energy Environ. Sci., 8(5), 1450 (2015).
  45. H. J. Liu, F. Wang, Y. Zhao, and H. Fong, Mechanically resilient electrospun TiC nanofibrous mats surface-decorated with Pt nanoparticles for oxygen reduction reaction with enhanced electrocatalytic activities, Nanoscale, 5(9), 3643 (2013).
  46. S. N. Stamatin, J. Speder, R. Dhiman, M. Arenz, and E. M. Skou, Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells, ACS Appl Mater Interfaces, 7(11), 6153 (2015).
  47. Y. Nabil, S. Cavaliere, I. A. Harkness, G. A. Hards, J. S. Sharman, D. J. Jones, and J. Roziere, Corrosion Resistant Electrospun Niobium Carbide Nanotube Supports for PEMFC Cathodes, ECS Trans, 69(17), 1221 (2015).
  48. S. Jayabal, G. Saranya, D. Geng, L. Y. Lin, and X. Meng, Insight into the correlation of Pt-support interactions with electrocatalytic activity and durability in fuel cells, J. Mat. Chem. A, 8(19), 9420 (2020).
  49. H. Nan, D. Dang, and X. L. Tian, Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction, J. Mater Chem. A Mater, 6(14), 6065 (2018).
  50. Y. Xiao, G. Zhan, Z. Fu, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu, and Z. Wei, Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction, J, Power Sources, 284, 296 (2015).
  51. S. Yang, J. Kim, Y. J. Tak, A. Soon, and H. Lee, Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions, Angewandte Chemie, 128(6), 2098 (2016).
  52. H. N. Nong, L. Gan, E. Willinger, D. Teschner, and P. Strasser, IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting, Chem. Sci., 5(8), 2955 (2014).
  53. K. W. Ahmed, M. J. Jang, M. G. Park, Z. Chen, and M. Fowler, Effect of Components and Operating Conditions on the Performance of PEM Electrolyzers: A Review, Electrochem., 3(4), 581 (2022).
  54. X. Yin, L. Yang, and Q. Gao, Core-shell nanostructured electrocatalysts for water splitting, Nanoscale, 12(30), 15944 (2020).
  55. H. S. Oh, H. N. Nong, T. Reier, M. Gliech, and P. Strasser, Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers, Chem. Sci., 6(6), 3321 (2015).
  56. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges, and K. B. Kokoh, IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting, J. Phy. Chem. C, 120(5), 2562 (2016).
  57. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, Multifunctional composite core-shell nanoparticles, Nanoscale, 3(11), 4474 (2011).
  58. R. Ghosh Chaudhuri and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chemical Reviews, 112(4), 2373 (2012).
  59. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, and Y. Tang, Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction," Chem. Sci., 7(5), 3399 (2016).
  60. S. M. Alia, Y. S. Yan, and B. S. Pivovar, Galvanic displacement as a route to highly active and durable extended surface electrocatalysts, Catal Sci. Technol., 4(10), 3589 (2014).
  61. S. M. Alia, S. Shulda, C. Ngo, S. Pylypenko, and B. S. Pivovar, Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts, ACS Catal, 8(3), 2111 (2013).
  62. S. M. Alia, B. S. Pivovar, and Y. Yan, Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base, J. Am. Chem. Soc., 135(36), 13473 (2013).
  63. S. M. Alia, K. O. Jensen, B. S. Pivovar, and Y. Yan, Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts, ACS Catalysis, 2(5), 858 (2012).
  64. B. M. Tackett, W. Sheng, S. Katte, S. Yao, B. Yan, K. A. Kuttiyiel, Q. Wu, and J. G. Chen, Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core-Shell Particles with Nitride Cores, ACS Catalysis, 8(3), 2615 (2018).
  65. P. Lettenmeier, J. Majchel, L. Wang, V. A. Saveleva, S. Zafeiratos, e. R. Savinova, J. J. Gallet, F. Bournel, A. S. Gago, and K. A. Friedrich, Highly active nano-sized iridium catalysts: Synthesis and operando spectroscopy in a proton exchange membrane electrolyzer, Chem. Sci., 9(14), 3570 (2018).
  66. C. A. dos Santos, M. M. Seckler, A. P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, and M. Rai, Silver nanoparticles: Therapeutical uses, toxicity, and safety issues, J. Pharm. Sci., 103(7), 1931 (2014).
  67. V. Raji, M. Chakraborty, and P. A. Parikh, Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity, Particulate Sci. Tech., 30(6), 565 (2012).
  68. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H. N. Nong, R. Schlogl, K. J. J. Mayrhofer, and P. Strasser, Molecular insight in structure and activity of highly efficient, lowIr Ir-Ni oxide catalysts for electrochemical water splitting (OER), J. Am. Chem. Soc., 137(40), 13031 (2015).
  69. N. B. Halck, V. Petrykin, P. Krtil, and J. Rossmeisl, Beyond the volcano limitations in electrocatalysis-oxygen evolution reaction, Physical Chemistry Chemical Physics, 16(27), 13682 (2014).
  70. R. Yang, P. Strasser, and M. F. Toney, Dealloying of Cu3Pt (111) studied by surface X-ray scattering," J. Physical Chemistry C, 115(18), 9074 (2011).
  71. C. T. K. Nguyen, N. Q. Tran, T. A. Le, and H. Lee, Covalently bonded Ir (IV) on conducted blue TiO2 for efficient electrocatalytic oxygen evolution reaction in acid media, Catalysts, 11(10), 1176 (2010).
  72. H. N. Nong, T. Reier, H. S. Oh, M. Gliech, P. Paciok, T. H T. Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlogl, T. Jones, and P. Strasser, A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts, Nat Catal, 1(11), 841 (2018).
  73. K. A. Kuttiyiel, K. Sasaki, W.-F. Chen, D. Su, and R. R. Adzic, Core-Shell, Hollow-Structured Iridium-Nickel Nitride Nanoparticles for the Hydrogen Evolution Reaction, J. Mater. Chem. A, 2, 591 (2014).
  74. N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, and H. M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2), 337 (2017).
  75. J. Shan, c. Guo, Y. Zhu, M. Jaroniec, Y. Zheng, S. Z. Qiao, Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media, Chem, 5(2), 445 (2019).
  76. L. Yu, Y. Liu, F. Yang, J. Evans, J. A. Rodriguez, and P. Liu, CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide-Metal Interactions, J. Physical Chemistry C, 119(29), 16614 (2015).
  77. P. Zhang, S.-Y. Huang, and B. N. Popov, Mesoporous Tin Oxide as an Oxidation-Resistant Catalyst Support for Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc., 157(8), B1163 (2010).
  78. T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, and K. Yasuda, Stability of Corrosion-Resistant Magneli-Phase Ti[sub 4]O[sub 7]-Supported PEMFC Catalysts at High Potentials, J. Electrochem. Soc., 155(4), B321 (2008).
  79. Y. Liu and W. E. Mustain, High stability, high activity Pt/ITO oxygen reduction electrocatalysts, J. Am. Chem. Soc., 135(2), 530 (2013).
  80. O. Lori and L. Elbaz, Advances in ceramic supports for polymer electrolyte fuel cells, Catalysts, 5(3), 1445 (2015).
  81. S. Trasatti, Electrocatalysis: understanding the success of DSA®, Electrochimica Acta, 45(15-16), 2377 (2000).
  82. E. Oakton, IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction, ACS Catal, 7(4), 2346 (2017).
  83. T. Reier, D. Teschner, T. Lunkenbein, A. Bergmann, S. Selve, R. Schlogl, and P. Strasser, Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species, J. Electrochem Soc., 161(9), F876(2014).
  84. T. Reier, I. Weidinger, P. Hildebrandt, R. Kraehnert, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction on Iridium Oxide Model Film Catalysts: Influence of Oxide Type and Catalyst Substrate Interactions, ECS Trans, 58(2), 39 (2013).
  85. P. Mazur, J. Polonsky, M. Paidar, and K. Bouzek, Nonconductive TiO2 as the anode catalyst support for PEM water electrolysis, Int. J. Hydrogen. Energy, 37(17), 12081 (2012).
  86. H. Yoo, K. Oh, Y. R. Lee, K. H. Row, G. Lee, and J. Choi, Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting, Int. J. Hydrogen. Energy, 42(10), 6657 (2017).
  87. M. Bele, K. Stojanovski, P. Javanovic, L. Moriau, G. K. Podborsek, J. Moskon, P. Umek, M. Sluban, G. Drazic, N. Hodnik, and M. Gaberscek, Towards Stable and Conductive Titanium Oxynitride High Surface Area Support for Iridium Nanoparticles as Oxygen Evolution Reaction Electrocatalyst, Chem. Cat. Chem., 11(20), 5038 (2019).
  88. M. Bele, P. Jovanovic, Z. Marinko, S. Drev, V. S. Selih, J. Kovac, M. Gaberscek, G. K. Podbersek, G. Drazic, N. Hodnik, A. Kokalj, and L. Suhadiljhik, Increasing the Oxygen-Evolution Reaction Performance of Nanotubular Titanium Oxynitride-Supported Ir Nanoparticles by a Strong Metal-Support Interaction, ACS Catal, 10(22), 13688 (2020).
  89. L. Moriau, G. K. Podborsek, A. K. Surca, S. S. Parpari, M. Sala, U. Petek, M. Bele, P. Jovanovic, B. Genorio, and Nejc Hodnik, Enhancing Iridium Nanoparticles' Oxygen Evolution Reaction Activity and Stability by Adjusting the Coverage of Titanium Oxynitride Flakes on Reduced Graphene Oxide Nanoribbons' Support, Adv. Mater Interfaces, 8(17), 2100900 (2021).
  90. F. M. El-Hossary, N. Z. Negm, A. M. Abd El-Rahman, M. Raaif, and A. A. Abd Elmula, Properties of Titanium Oxynitride Prepared by RF Plasma, Adv. Chem. Eng. Sci., 5(1), 1 (2015).
  91. X. Song, D. Gopireddy, and C. G. Takoudis, Characterization of titanium oxynitride films deposited by low pressure chemical vapor deposition using amide Ti precursor, Thin Solid Films, 516(18), 6330 (2008).
  92. J. Roeser, N. F. A. Alting, H. P. Permentier, A. P. Bruins, and R. Bischoff, Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides, Anal. Chem., 85(14), 6626 (2013).
  93. Y. Al-Abdallat, I. Jumah, R. Jumah, H. Ghanem, and A. Telfah, Catalytic electrochemical water splitting using boron doped diamond (BDD) electrodes as a promising energy resource and storage solution, Energies (Basel), 13(20), 5265 (2020).
  94. A. Hartig-Weiss, M. Miller, H. Beyer, A. Schmitt, A. Siebel, A. T. S. Freiberg, H. A. Gasteiger, and H. A. El-Sayed, Iridium Oxide Catalyst Supported on Antimony-Doped Tin Oxide for High Oxygen Evolution Reaction Activity in Acidic Media, ACS Appl Nano Mater, 3(3), 2185 (2020).
  95. D. Bohm, M. Beetz, C. Gebauer, M. Bernt, J. Schroter, M. Kornherr, F. Zoller, T. Bein, and D. Fattakhova-Rohlfing, Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis, Appl Mater Today, 24, 101134 (2021).
  96. G. Li, K. L. L. Yang, J. Chang, R. Ma, Z. Wu, J. Ge, C. Liu, and W. Xing, Boosted Performance of Ir Species by Employing TiN as the Support toward Oxygen Evolution Reaction, ACS Appl Mater Interfaces, 10(44), 38117 (2018).
  97. K. Jiang, M. Luo, M. Peng, Y. Yu, Y. R. Lu, T. S. Chan, P. Liu, F. M. F. d. Groot, and Y. Tan, Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation, Nat Commun, 11(1), 2701 (2020).
  98. Y. Wang and J. Kim, Oxygen Evolution Reaction on Nanoporous Gold Modified with Ir and Pt: Synergistic Electrocatalysis between Structure and Composition, Electroanalysis, 31(6), 1026 (2019).
  99. J. Liu, Z. Wang, K. Su, D. Xv, D. Zhao, J. Li, H. Tong, D. Qian, C. Yang, and Z. Lu, Self-Supported Hierarchical IrO2@NiO Nanoflake Arrays as an Efficient and Durable Catalyst for Electrochemical Oxygen Evolution, ACS Appl Mater Interfaces, 11(29), 25854 (2019).
  100. A. Loncar, D. Escalera-Lopez, F. Ruiz-Zepeda, A. Hrnjic, M. Sala, P. Jovanovic, M. Bele, S. Cherevko, and N. Hodnik, Sacrificial Cu Layer Mediated the Formation of an Active and Stable Supported Iridium Oxygen Evolution Reaction Electrocatalyst, ACS Catal, 11(20), 12510 (2021).