Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.1.50

Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions  

Seo, Hye Inn (Department of Chemical Engineering, Myongji University)
Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
Publication Information
Korean Journal of Materials Research / v.28, no.1, 2018 , pp. 50-61 More about this Journal
Abstract
Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from $NaHCO_3$ and $KHCO_3$ with $H^+$ ions had higher specific surface areas but exhibited lower electrochemical properties than those from $K_2CO_3$ and $Na_2CO_3$, which had more uniform pore size distributions. The electrochemical properties of $Na_2CO_3$ were superior to those of $K_2CO_3$ probably because the polarizing power of $Na^+$ ions was higher than $K^+$ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.
Keywords
carbon aerogel; catalyst; pore size distribution; EDLC; electrochemical property;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009).   DOI
2 D. Qu, H. Shi, J. Power Sources, 74, 99 (1998).   DOI
3 Y. Zhai, Y. Dou, D. Zho, P. F. Fulvio and R. T. Mayes, Adv. Mater., 23, 4828 (2011).   DOI
4 M. Noked, A. Soffer and D. Aurbach, J. Solid State Electr., 15, 1563 (2011).
5 E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007).   DOI
6 E. Frackowiak, Q. Abbas and F. Beguin, J. Energy Chem., 22, 227 (2013).
7 H. M. Lee, H. G. Kim, K. H. An and B. J. Kim, J. Nanosci. Nanotech., 15, 8797 (2015).   DOI
8 T. E. Rufford, D. H. Jurcakova, E. Fiset, Z. Zhu and G. Q. Lu, Electrochem. Commun., 11, 974 (2009).   DOI
9 H. M. Lee, H. G. Kim, K. H. An and B. J. Kim, Carbon Lett., 15, 71 (2014).   DOI
10 Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou Adv. Mater., 24, 5713 (2012).
11 E. J. Lee, Y. J. Lee, J. K. Kim, M. Z. Lee, J. H. Yi, J. R. Yoon, J. C. Song and I. K. Song, Mater. Res. Bull., 70, 209 (2015).   DOI
12 H. Tamon, H. Ishizaka, T. Araki and M. Okazaki, Carbon, 36, 1257 (1998).   DOI
13 N. Job, R. Pirard, J. Marien and J. P. Pirard, Carbon, 42, 619 (2004).   DOI
14 Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li and H. M. Cheng, Nano. Energy, 1, 107 (2012).
15 J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose and T. F. Baumann, Energy Environ. Sci., 4, 656 (2011).   DOI
16 S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj and C. N. R. Rao, J. Chem. Sci., 120, 9(2008).
17 Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, Adv. Funct. Mater., 21, 2366 (2011).   DOI
18 J. Chmiola, G. Yushin, R. Dash and Y. Gogotsi, J. Power Sources, 158, 765 (2006).   DOI
19 L. Zuo, Y. Zhang, L. Zhang, Y. E. Miao, W. Fan and T. Liu, Materials, 5, 6806 (2015).
20 A. C. Pierre and G. M. Pajonk, Chem. Rev., 102, 4243 (2002).   DOI
21 R. W. Pekala, J. Mater. Sci., 24, 3221 (1989)
22 N. Liu, J. Shen and D. Liu, Microporous Microporous Mater., 167, 23 (2013).
23 S. A. Al-Muhtaseb and J. A. Ritter, Adv. Mater., 15, 101 (2003).   DOI
24 A. M. Elkhatat and S. A. Al-Muhtaseb, Adv. Mater., 23, 2887 (2011).   DOI
25 S. J. Taylor, M. D. Haw, J. Sefcik and A. J. Fletcher, Lamgmuir, 30, 10231 (2014).   DOI
26 T. Yamanoto, T. Yoshida, T. Suzuki, S. R. Mukai and H. Tamon, J. Colloid Interface Sci., 245, 391 (2002).   DOI
27 I. C. Yang, S. G. Kim, S. H. Kwon, M. S. Kim and J. C. Jung, Electrochim. Acta, 223, 21 (2017).   DOI
28 T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino and S. R. Mukai, Carbon, 76, 240 (2014).   DOI
29 Y. Hamano, S. Tsujimura, O. Shirai and K. Kano, Mater. Lett., 128, 191 (2014).   DOI
30 R. Brandt, R. Petricevic, H. Probstle and J. Fricke, J. Porous Mater. 10, 171 (2003).
31 C. Lin and J. A. Ritter, Carbon, 35, 1271 (1997).   DOI
32 S. W, Hwang and S. H. Hyun, J. Non-Cryst. Solids, 347, 238 (2004).   DOI
33 T. Horikawa, J. Hayashi and K. Muroyama, Carbon, 42, 1625 (2004).   DOI
34 W. Wang, P. Liu, M. Zhang, J. Hu and F. Xing, J. Compos. Mater., 2, 104 (2012).
35 S. Mezzacilla, C. Zancella, P. R. Aravind, C. D. Volpe and G. D. Soraru, J. Mater. Sci., 47, 7175 (2012).
36 J. Feng, J. Feng and C. Zhang, J. Sol-Gel. Sci. Technol., 59, 371 (2011).
37 N. Job, A. Thery, R. Pirard, J. Mariea, L. Kocon, J. Rouzaudm R. Beguin and J. Pirard, Carbon, 43, 2481(2005).   DOI
38 Y. J. Lee, J. C. Jung, J. Y. Yi, S. H. Baeck, J. R. Yoon and I. K. Song, Curr. Appl. Phys., 10, 682 (2010).   DOI
39 R. Kotz and M. Carlen, Electrochim. Acta 45, 2483(2000).   DOI
40 S. H. Kwon, E. J, Lee, B. S. Kim, S. G. Kim, B. J. Lee, M. S. Kim and J. C. Jung, Korean J. Chem. Eng., 14, 603(2014).
41 J. Chmila, G. Yushin, Y. Gogotsi, C. Portet. P. Simon and P. L. Taberna, Science, 313, 1760 (2006).   DOI
42 C. Largeot, C. Portet. J. Chmiola, P. L. Taberna, Y. Gogotsi and P. Simon, J. Am. Chem. Soc., 130, 2790 (2008).
43 W. Kunz, J. Henle and B. W. Ninham, Curr. Opin. Colloid Interface Sci., 9, 19 (2004).   DOI
44 J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Angew. Chem. 120, 3440 (2008).   DOI
45 D. Fairen-Jimenez, F. Carrasco-Marin and C. Moreno-Castilla, Carbon, 44, 2301 (2006).   DOI
46 J. S. Chen, J. P. Diard, R. Durand and, C. Montella, J. Electro. Chem., 406, 1 (1996).   DOI
47 J. H. Jang and S. M. Oh, J. Korean Electrochem. Soc., 13, 223 (2010).   DOI