Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.1.22

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis  

Ban, Hee-Jung (Korea Institute of Industrial Technology (KITECH))
Kim, Min Young (Korea Institute of Industrial Technology (KITECH))
Kim, Dahye (Korea Institute of Industrial Technology (KITECH))
Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
Kim, Tae Won (Korea Institute of Industrial Technology (KITECH))
Jeong, Chaehwan (Korea Institute of Industrial Technology (KITECH))
Kim, Yoong-Ahm (Department of Advance Chemicals and Engineering, Chonnam National University)
Kim, Ho-Sung (Korea Institute of Industrial Technology (KITECH))
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.1, 2019 , pp. 22-28 More about this Journal
Abstract
To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.
Keywords
Water electrolysis reaction; Solid polymer electrolyte; Oxygen evolution reaction; Anode catalyst; Membrane electrode assembly; Polarization and stability; Over-potential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Millet, T. Alleau and R. Durand, J. Appl. Electrochem.,1993, 23(4), 322-331.   DOI
2 P. Millet, N. Mbemba, S. A. Rigoriev, V. N. Fateev, A. Aukauloo and C. Etievant, Int. J. Hydrogen Energy, 2011, 36(6), 4134-4142.   DOI
3 S. Grigoriev, V. Porembsky and V. Fateev, Int. J. Hydrogen Energy, 2006, 31(2), 171-175.   DOI
4 Egil Rasten, editor, Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte, 2001, p22.
5 A. Marshall, B. Borresen, Hagen, S. Sunde, M. Tsypkin and R. Tunold, Russ. J. Electrochem., 2006, 42(10), 1134-1140.   DOI
6 S. Siracusano, V. Baglio, A. Stassi, R. Ornelas, V. Antonucci and A. S. Arico, Int. J. Hydrogen Energy, 2011, 36(13), 7822-7831.   DOI
7 J. J. Kim, Y. S. Choi, and S. J. Kwon, J. Korean Electrochem. Soc., 2013, 16(2), 70-73.   DOI
8 Y. J. Zhang, C. Wang, N. F. Wan, Z. X. Liu and Z. Q. Mao, Electrochem. Commun., 2007, 9(4), 667-670.   DOI
9 R. Yamaguch, In Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, 1997, Vol. 3, 1958-1968.
10 L. Ma, S. Sui and Y. Zhai, Int. J. Hydrogen Energy, 2009, 34(2), 678-684.   DOI
11 G. Li, H. Yu, X. Wang, S. Sun, Y. Li, Phys. Chem. Chem. Phys., 2013, 15(8), 2858-2866.   DOI
12 J.-M. Hu, J.-Q. Zhang and C.-N. Cao, Int. J. Hydrogen Energy, 2004, 29(8), 791-797.   DOI
13 L. Ma, S. Sui, Y. Zhai, Int. J. Hydrogen Energy, 2009, 34(2), 678-684.   DOI
14 C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 153-160.   DOI
15 C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 123-131.   DOI
16 H. Su, V. Linkov, B. J. Bladergroen, Int. J. Hydrogen Energy, 2013, 38(23), 9601-9608.   DOI
17 M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc., 1992, 139(2), L28-L30.   DOI
18 M.S. Wilson and S. Gottesfeld, J. Appl. Electrochem., 1992, 22(1), 1-7.   DOI
19 R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, and J. J. Kai, J. Mater. Chem., 2003, 13(10), 2525-2529.   DOI
20 S. Kumar, S. Chinnathambi, and N. Munichandraiah, New J. Chem., 2015, 39(9), 7066-7075.   DOI
21 C. Gutsche, C. J. Moeller, M. Knipper, H. Borchert, J. Parisi, and T. Plaggenborg, J. Phys. Chem. C, 2016, 120(2), 1137-1146.   DOI
22 P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. AukaulooA, C. Etie'vant, Int. J. Hydrogen Energy, 2011, 36(6), 4134-4142.   DOI
23 X.Z.Yuan, H.J.Wang, J.C. Sun, J.J. Zhang, Int. J. Hydrogen Energy, 2007, 32(17), 4365-4380   DOI
24 P. Millet, F. Andolfatto and R. Durand, Int. J. Hydrogen Energy, 1996, 21(2), 87-93.   DOI
25 G. Wei, Y. Wang, C. Huang, Q. Gao, Z. Wang and L. Xu, Int. J. Hydrogen Energy, 2010, 35(9), 3951-3957.   DOI
26 F. Andolfatto, R. Durand, A. Michas, P. Millet and P. Stevens, Int. J. Hydrogen Energy, 1994, 19(5), 421-427.   DOI