• 제목/요약/키워드: Electrochemical activities

검색결과 86건 처리시간 0.024초

탄소지지체의 화학적 변형에 따른 연료전지용 백금-루테늄 촉매의 전기화학적 활성의 영향 (Effect of Chemical Modification of Carbon Supports on Electrochemical Activities for Pt-Ru Catalysts of Fuel Cells)

  • 김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.1-94.1
    • /
    • 2011
  • In this work, ordered mesoporous carbons (OMCs) were prepared by the conventional templating method using mesoporous silica (SBA-15) for Pt-Ru catalyst supports in fuel cells. The influence of surface modification on carbon supports on the electrochemical activities of Pt-Ru/OMCs was investigated with different pH. The neutral-treated OMCs (N-OMCs), base-treated OMCs (B-OMCs), and acid-treated OMCs (A-OMCs) were prepared by treating OMCs with 2 M $C_6H_6$, 2 M KOH, and 2 M $H_3PO_4$, respectively. The surface characteristic of the carbon supports were determined X-ray photoelectron spectroscopy (XPS). The electrochemical activities of the Pt-Ru catalysts had been enhanced when the OMCs supports were treated by basic or neutral agents, while the electrochemical activities had been decayed for the A-OMCs supported Pt-Ru.

  • PDF

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

  • Dutta, Gorachand;Yang, Haesik
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.27-32
    • /
    • 2016
  • Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.

A Study on the Development of Arduino-Electrochemical Cell and the Exploration of Educational Possibilities from the Perspective of Learning by Making

  • Yoon, Jihyun;Cheon, Ji-Hye;Kang, Seong-Joo
    • 대한화학회지
    • /
    • 제65권3호
    • /
    • pp.219-229
    • /
    • 2021
  • In this study, the new electrochemical cell device using Arduino and sensor was developed, and experiments of changes in voltage at the time of serial and parallel connection of electrochemical cells were conducted to verify the effectiveness of the device. In addition, in order to examine the educational effects of the device, student's inquiry activities of measuring voltage of electrochemical cells and making objects using the voltage difference were conducted. As a result, it was confirmed that the electrochemical device using Arduino and sensor could not only perform automatic measurements and visualize data but also have a possibility to seek various educational effects through easy coding and modification of the device. Based on the results of students' performance, it was found that experimental activities using the device impart a positive effect not only on the understanding of scientific concepts, but also on the development of the practical ability to apply scientific knowledges to the real life. Educational implications are discussed in terms of 'learning by making'.

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes

  • Choi, Moon-Jeong;Jo, Kyung-Mi;Yang, Hae-Sik
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.24-28
    • /
    • 2012
  • The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

ELECTROCHEMICAL PROCESSING OF USED NUCLEAR FUEL

  • Goff, K.M.;Wass, J.C.;Marsden, K.C.;Teske, G.M.
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.335-342
    • /
    • 2011
  • As part of the Department of Energy's Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

Palladium Layers on an Au(111) Nanoparticle and Their Catalytic Activity to Formic Acid Oxidation

  • 김병권;서대하;송현준;곽주현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.206-206
    • /
    • 2011
  • Nanoparticles have been received great attention from many researchers for several decades because of their good and unique properties. In particular, researches in the field of synthesis of bimetallic nanoparticles showed good results for the past ten years. In this research, Pd thinlayer on Au nanoparticles were synthesized by electrochemical deposition method. Well-defined Au(111) nanoparticles were synthesized by solution based reduction method. Electrochemical deposition conditions for Pd thinlayer on Au(111) nanoparticles surface were carefully regulated by controlling parameters of cyclic voltammetry. To calculate exact mass and surface area catalytic activities of deposited Pd thinlayer on Au(111) nanoparticle, electrochemically active surface area (ECSA) and mass of the deposited Pd thinlayer were measured by cyclic voltammetry in 0.1 M HClO4 solution. Afterward, catalytic activities of the deposited Pd thinlayer were measured in 0.1 M HClO4 + 0.2 M formic acid solution. In case of less negative deposition potential, the amounts of deposited Pd mass and surface area were small. However, mass and ECSA activity of the deposited Pd to oxidize formic acid were increased.

  • PDF

Electrochemical Oxidations of Alcohols on Platinum/Carbon Nanotube Composites

  • Kim, Jungsoo;Nam, Dae-Geun;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.125-129
    • /
    • 2013
  • Composites of platinum and multiwalled carbon nanotubes (MWNTs) were prepared in various reduction conditions and characterized using cyclic voltammetry. The MWNTs were functionalized with carboxylic acid and/or hydroxyl groups in acidic solutions prior to the formation of MWNT-Pt composites. Platinum nanoparticles were deposited onto the chemically-oxidized MWNTs in 1-propanol and 1,3-propanediol. The reduction of Pt precursors in other solutions could induce differences in their morphologies in composite thin films. The morphologies of MWNTs with Pt deposited were dependent on the reduction solutions, and the electrocatalytic activities on alcohols changed accordingly. The electrochemical activities of the as-prepared MWNT-Pt thin films on common alcohols such as methanol and ethanol were investigated.