DOI QR코드

DOI QR Code

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok (Dept. of Chemical and Biochemical Engineering, Pusan National University) ;
  • Jung, Yong-Ju (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2009.06.29
  • Accepted : 2009.09.01
  • Published : 2009.09.30

Abstract

The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

Keywords

References

  1. Chen, C. Y.; Yang, P.; Lee, Y. S.; Lin, K. F. J. Power Sources 2005, 141, 24. https://doi.org/10.1016/j.jpowsour.2004.09.011
  2. Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  3. Guo, J. W.; Zhao, T. S.; Prabhuram, J.; Wong, C. W. Electrochim. Acta 2005, 50, 1973. https://doi.org/10.1016/j.electacta.2004.09.006
  4. Arico, A. S.; Creti, P.; Modica, E.; Monforte, G.; Baglio, V.; Antonucci, V. Electrochim. Acta 2000, 45, 4319. https://doi.org/10.1016/S0013-4686(00)00531-4
  5. Kim, S.; Cho, M. H.; Lee, J. R.; Ryu, H. J.; Park, S. J. Korean Chem. Eng. Res. 2005, 43, 756.
  6. Frelink, T.; Visscher, W.; Rvan, J. A. J. Electroanal Chem. 1995, 382, 65. https://doi.org/10.1016/0022-0728(94)03648-M
  7. Lordi, V.; Yao, J.; Wei, J. Chem. Mater. 2001, 13, 733. https://doi.org/10.1021/cm000210a
  8. Choi, K. H.; Kim, H. S.; Lee, T. H. J. Power Sources 1998, 75, 230. https://doi.org/10.1016/S0378-7753(98)00116-5
  9. Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Baker, R. T. J. Phys. Chem. 2001, 105, 1115. https://doi.org/10.1021/jp0028507
  10. Hyeon, T.; Han, S.; Sung, T. E.; Park, K. W.; Kim, Y. W. Angew. Chem. 2003, 42, 4357. https://doi.org/10.1002/anie.200351605
  11. Arico, A. S.; Shulka, A. K.; Khatib, K. M.; Creti, P.; Antonucci, V. J. Appl. Electrochem. 1999, 29, 671.
  12. Kim, S.; Park, S.J. J. Power Sources 2006, 159, 42. https://doi.org/10.1016/j.jpowsour.2006.04.041
  13. Kim, S.; Cho, M. H.; Lee, J. R.; Park, S. J. J. Power Sources 2006, 159, 46. https://doi.org/10.1016/j.jpowsour.2006.04.039
  14. Kim, S.; Park, S. J. Electrochim. Acta 2007, 52, 3013. https://doi.org/10.1016/j.electacta.2006.09.060
  15. Kim, T. R.; Wu, J. Y.; Hu, Q.; Kim M. S. Carbon Letters 2007, 8, 335. https://doi.org/10.5714/CL.2007.8.4.335
  16. Park, S. J.; Lee, S. Y. Carbon Letters 2009, 10, 19. https://doi.org/10.5714/CL.2009.10.1.019
  17. Yun, J.; Im J. S.; Oh. A.; Lee. Y. S.; Kim, H. I. Carbon Letters 2009, 10, 33. https://doi.org/10.5714/CL.2009.10.1.033
  18. Kinoshita, K. "Carbon: Electrochemical and Physicochemical Properties", John Wiley, New York, 1988, 31.