• Title/Summary/Keyword: Electrochemical Property

Search Result 384, Processing Time 0.034 seconds

The Sintering Temperature Effect on Electrochemical Properties of LiMn2O4

  • Hwang, Jin-Tae;Park, Sung-Bin;Park, Chang-Kyoo;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3952-3958
    • /
    • 2011
  • The effect of sintering temperature on the electrochemical property of $LiMn_2O_4$ was investigated. Results showed that the particle size was increased at higher sintering temperatures while the initial capacity was decreased after high temperature sintering. Capacity fading, on the other hand, was suppressed at lower sintering temperatures since the sintering at higher temperatures (${\geq}800^{\circ}C$) increased the Mn ions with a lower oxidation state ($Mn^{+3}$), which induced structural instability during cycling due to dissolution of Mn ions into the electrolyte. In particular, $LiMn_2O_4$ sintered above $830^{\circ}C$ showed severe capacity fading (capacity loss was 38% of initial capacity) by lower coulombic efficiency due to the abnormally increased particle size.

Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

  • Ramesh, D.;Shakkthivel, P.;Manickam, A. Susai;Kalpana, A.;Vasudevan, T.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.62-68
    • /
    • 2006
  • Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications.

Fabrication of Lithium Nickel Cobaltate Thin-film for the Cathode Material of Microbattery

  • Kim, Duksu;Kim, Mun-Kyu;Son, Jong-Tae;Kim, Ho-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.683-686
    • /
    • 2001
  • Electrochemically active lithium nickel cobalt oxide thin-film was not fabricated until now. The thin-film was deposited by RF magnetron sputtering at room temperature, and its initial phase was amorphous. By varying deposition condition, the different characteristics of thin-film were achieved. Using electrochemical analyses, the relationship between physical and electrochemical characteristics was identified. Crystallized thin-film by RTA (Rapid Thermal Annealing) was shown a good capacity and cycle property.

  • PDF

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

Electrochemical Property of Immobilized Spinach Ferredoxin on HOPG Electrode

  • Nam Yun-Suk;Kim, You-Sung;Shin, Woon-Sup;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1043-1046
    • /
    • 2004
  • The stability and electrochemical properties of a self-assembled layer of spinach ferredoxin on a quartz substrate and on a highly oriented pyrolytic graphite electrode were investigated. To fabricate the ferredoxin self-assembly layer, dimyristoylphosphatidylcholine was first deposited onto a substrate for ferredoxin immobilization. Surface analysis of the ferredoxin layer was carried out by atomic force microscopy to verify the ferredoxin immobilization. To verify ferredoxin immobilization on the lipid layer and to confirm the maintenance of redox activity, absorption spectrum measurement was carried out. Finally, cyclic-voltammetry measurements were performed on the ferredoxin layers and the redox potentials were obtained. The redox potential of immobilized ferredoxin had a formal potential value of -540 mV. It is suggested that the redox-potential measurement of self-assembled ferredoxin molecules could be used to construct a biosensor and biodevice.

Direct Electrode Reaction of Fe(III)-Reducing Bacterium, Shewanella putrefaciens

  • Kim, Byung-Hong;Kim, Hyung-Joo;Hyun, Moon-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Anaerobically grown cells of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-l, were electrochemically active with an apparent reduction potential of about 0.15 V against a saturated calomel electrode in the cyclic voltammetry. The bacterium did not grow fermentatively on lactate, but grew in an anode compartment of a three-electrode electrochemical cell using lactate as an electron donor and the electrode as the electron acceptor. This property was shared by a large number of Fe(III)-reducing bacterial isolates. This is the first observation of a direct electrochemical reaction by an intact bacterial cell, which is believed to be possible due to the electron carrier(s) located at the cell surface involved in the reduction of the natural water insoluble electron acceptor, Fe(III).

  • PDF

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Improvement of Protective Properties of Top Coatings Applied on Zinc-Rich Primer by 3-Aminopropyl-Triethoxysilan and 2-(Benzothialylthio) Succinic acid

  • Trinh, Anh Truc;To, Thi Xuan Hang;Vu, Ke Oanh;Nguyen, Tuan Dung
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.107-111
    • /
    • 2004
  • Corrosion resistance of coating system consisting of zinc-rich primer (ZRP) and topcoat based on polyurethane resin with the presence of 3-aminopropyl-triethoxysilan (APS) and 2-(benzothialylthio) succinic acid (BSA) was studied by electrochemical impedance and wet adhesion. The interface metal/primer/topcoat was analyzed by scanning electronic microscopy. It was found that the presence of APS and BSA improved adhesion and barrier property of the topcoats.

Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire (인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.