• 제목/요약/키워드: Electrochemical Material

검색결과 1,489건 처리시간 0.026초

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.346-351
    • /
    • 2020
  • The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • 제26권12호
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제22권7호
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

Fabrication of 3-Dimensional Microstructures for Bulk Micromachining by SDB and Electrochemical Etch-Stop (SDB와 전기화학적 식각정지에 의한 벌크 마이크로머신용 3차원 미세구조물 제작)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제15권11호
    • /
    • pp.958-962
    • /
    • 2002
  • This paper reports on the fabrication of free-standing microstructures by DRIE (deep reactive ion etching). SOI (Si-on-insulator) structures with buried cavities are fabricated by SDB (Si-wafer direct bonding) technology and electrochemical etch-stop. The cavity was formed the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the formed cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing (100$0^{\circ}C$, 60 min.), the SDB SOI structure with a accurate thickness and a good roughness was thinned by electrochemical etch-stop in TMAH solution. Finally, it was fabricated free-standing microstructures by DRIE. This result indicates that the fabrication technology of free-standing microstructures by combination SDB, electrochemical etch-stop and DRIE provides a powerful and versatile alternative process for high-performance bulk micromachining in MEMS fields.

Fabrication of Silicon Micromenbranes for MEMS Applications (MEMS용 실리콘 마이크로 멤브레인의 제작)

  • Chung, Gwiy-Sang;Park, Chin-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hydroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage (I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

Organic Electrolyte of the Additive the Gamma-Butyroloctone (GBL) for Additive Material Application to High Voltage Electrochemical Capacitor (Gamma-butyroloctone(GBL)을 첨가한 유기계 전해액의 고전압용 전기화학 커패시터로의 응용)

  • You, Sun-Kyung;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • 제20권1호
    • /
    • pp.13-17
    • /
    • 2017
  • In this study, we studied the organic electrolyte application to electrochemical capacitor for high operation voltage. For high operating voltage, 5 wt % of gamma butyroloctone (GBL) was added in the bare electrolyte. During the cycle performance, stable SEI layers were formed by reductive decomposition of additive GBL. As a result, columbic efficient of 1M $SBPBF_4$ in EC:DMC(1:1) with GBL composite was enhanced to 70% after the 2000th cycle at voltage range 0-3.5 V. Additionally, SEI layer protected the surface of electrode and prevent the side-reaction between electrolyte to electrode.

Fabrication of High-yield Si Thin-membranes by Electrochemical Etch-stop (전기화학적 식각정지에 의한 고수율 실리콘 박막 멤브레인 제작)

  • 정귀상;박진상;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제14권3호
    • /
    • pp.223-227
    • /
    • 2001
  • In this paper, the authors present the fabrication of high-yield Si thin-membranes by electrochemical etch-stop in tetramethyl ammonium hydroxide (TMAH): isopropyl alcohol (IPA):pyrazine solutions. The current-voltage (I-V) characteristics of n- and p-type Si in TMAH:IPA;pyrazine solutions were analysed, repsectively. Open circuit potential (OCP)and passivation potential (PP) of n- and p-type Si, respectively, were obtained and applied potential was selected between n- and p-type Si PPs. The electrochemical etch-stop method was applied to the fabrication of 801 micro-membranes with 20.0 $\mu\textrm{m}$ thickness on a 5" Si wafer. The average thickness of fabricated 801 micro-membranes on one wafer 20.03$\mu\textrm{m}$ and the standard deviation was ${\pm}$0.26$\mu\textrm{m}$. The Si surface of the etch-stopped micro-membranes was extremely flat with no noticeable taper or nonuniformity. The results indicate that use of the electrochemical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes.

  • PDF

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Ke-On
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.180-185
    • /
    • 2011
  • The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

Structural Effect of Conductive Carbons on the Adhesion and Electrochemical Behavior of LiNi0.4Mn0.4Co0.2O2 Cathode for Lithium Ion Batteries

  • Latifatu, Mohammed;Bon, Chris Yeajoon;Lee, Kwang Se;Hamenu, Louis;Kim, Yong Il;Lee, Yun Jung;Lee, Yong Min;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.330-338
    • /
    • 2018
  • The adhesion strength as well as the electrochemical properties of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ electrodes containing various conductive carbons (CC) such as fiber-like carbon, vapor-grown carbon fiber, carbon nanotubes, particle-like carbon, Super P, and Ketjen black is compared. The morphological properties is investigated using scanning electron microscope to reveal the interaction between the different CC and the active material. The surface and interfacial cutting analysis system is also used to measure the adhesion strength between the aluminum current collector and the composite film, and the adhesion strength between the active material and the CC of the electrodes. The results obtained from the measured adhesion strength points to the fact that the structure and the particle size of CC additives have tremendous influence on the binding property of the composite electrodes, and this in turn affects the electrochemical property of the configured electrodes.