Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00640

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface  

Seo, Yong-Jin (Department of Fire Service Administration, Sehan University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 346-351 More about this Journal
Abstract
The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.
Keywords
Electrolyte; Electrochemical Removal; Electrochemical-Mechanical Polishing (ECMP); Linear Sweep Voltammetry (LSV); Cyclic Voltammetry (CV);
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, D. J. Duquette, Mater. Chem. Phys., 1995, 41(3), 217-228.   DOI
2 S. Y. Kim, Y. J. Seo, Microelectron Eng., 2002, 60, 357-364.   DOI
3 S. Y. Jeong, S. Y. Kim, Y. J. Seo, Microelectron Eng., 2003, 66(1-4), 480-487.   DOI
4 Y. J. Seo, G. U. Kim, W. S. Lee, Microelectron Eng., 2004, 71(2), 209-214.   DOI
5 Y. J. Seo, W. S. Lee, Microelectron Eng., 2005, 77(2), 132-138.   DOI
6 S. Seal, S. C. Kuiry, B. Heinmen, Thin Solid Films, 2003, 423(2), 243-251.   DOI
7 S. Aksu, F. Doyle, J. Electrochem. Soc., 2002, 149(6), G352-G361.
8 P. C. Goonetilleke, D. Roy, Mater. Chem. Phys., 2005, 94(2-3), 388-400.   DOI
9 T. D. Hewitt, R. Gao, D. Roy, Surf. Sci., 1993, 291(1-2), 233-241.   DOI
10 K. A. Assiongbon, S. B. Emery, C. M. Pettit, S. V. Babu, D. Roy, Mater. Chem. Phys., 2004, 86(2-3), 347-357.   DOI
11 J. E. Garland, C. M. Pettit, M. J. Walters, D. Roy, Surf. Interface Anal., 2001, 31(6), 492-503.   DOI
12 D. Ernur, S. Kondo, D. Shamiryan, K. Maex, Microelectron. Eng., 2002, 64(1-4), 117-124.   DOI
13 K. A. Assiongbon, S. B. Emery, V. R. K. Gorantla, S. V. Babu, D. Roy, Corrosion Science, 2006, 48(2), 372-388.   DOI
14 J. Lu, J. E. Garland, C. M. Pettit, S. V. Babu, D. Roy, J. Electrochem. Soc., 2004, 151(10), G717-G722.
15 J. E. Garland, C. M. Pettit, M. J. Walters, D. Roy, Surf. Interface Anal., 2001, 31(6), 492-503.   DOI
16 S. J. Han, W. S. Lee, Y. J. Seo, J. Korean Phys. Soc., 2008, 53(9), 2401-2406.   DOI
17 Y. K. Lee, W. S. Lee, and Y. J. Seo, J. Korean Phys. Soc., 2008, 53(9), 2485-2490.   DOI
18 Y. J. Seo, Microelectron Eng., 2011, 88(1), 46-52.   DOI
19 I. Nicic, J. Liang, V. Cammarata, M. Alanyalioglu, U. Demir, C. Shannon, J. Phys. Chem. B, 2002, 106(47), 12247-12252.   DOI
20 V. Stamenkovic, N. M. Markovic, Langmuir, 2001, 17(8), 2388-2394.   DOI