DOI QR코드

DOI QR Code

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin (Department of Fire Service Administration, Sehan University)
  • Received : 2019.11.12
  • Accepted : 2020.05.09
  • Published : 2020.11.30

Abstract

The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.

Keywords

References

  1. J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, D. J. Duquette, Mater. Chem. Phys., 1995, 41(3), 217-228. https://doi.org/10.1016/0254-0584(95)01516-7
  2. S. Y. Kim, Y. J. Seo, Microelectron Eng., 2002, 60, 357-364. https://doi.org/10.1016/S0167-9317(01)00694-3
  3. S. Y. Jeong, S. Y. Kim, Y. J. Seo, Microelectron Eng., 2003, 66(1-4), 480-487. https://doi.org/10.1016/S0167-9317(02)00931-0
  4. Y. J. Seo, G. U. Kim, W. S. Lee, Microelectron Eng., 2004, 71(2), 209-214. https://doi.org/10.1016/j.mee.2003.11.005
  5. Y. J. Seo, W. S. Lee, Microelectron Eng., 2005, 77(2), 132-138. https://doi.org/10.1016/j.mee.2004.10.003
  6. J. Lu, J. E. Garland, C. M. Pettit, S. V. Babu, D. Roy, J. Electrochem. Soc., 2004, 151(10), G717-G722.
  7. S. Seal, S. C. Kuiry, B. Heinmen, Thin Solid Films, 2003, 423(2), 243-251. https://doi.org/10.1016/S0040-6090(02)00989-6
  8. S. Aksu, F. Doyle, J. Electrochem. Soc., 2002, 149(6), G352-G361.
  9. P. C. Goonetilleke, D. Roy, Mater. Chem. Phys., 2005, 94(2-3), 388-400. https://doi.org/10.1016/j.matchemphys.2005.05.020
  10. T. D. Hewitt, R. Gao, D. Roy, Surf. Sci., 1993, 291(1-2), 233-241. https://doi.org/10.1016/0039-6028(93)91495-B
  11. K. A. Assiongbon, S. B. Emery, C. M. Pettit, S. V. Babu, D. Roy, Mater. Chem. Phys., 2004, 86(2-3), 347-357. https://doi.org/10.1016/j.matchemphys.2004.03.016
  12. J. E. Garland, C. M. Pettit, M. J. Walters, D. Roy, Surf. Interface Anal., 2001, 31(6), 492-503. https://doi.org/10.1002/sia.1100
  13. D. Ernur, S. Kondo, D. Shamiryan, K. Maex, Microelectron. Eng., 2002, 64(1-4), 117-124. https://doi.org/10.1016/S0167-9317(02)00775-X
  14. K. A. Assiongbon, S. B. Emery, V. R. K. Gorantla, S. V. Babu, D. Roy, Corrosion Science, 2006, 48(2), 372-388. https://doi.org/10.1016/j.corsci.2005.01.008
  15. J. E. Garland, C. M. Pettit, M. J. Walters, D. Roy, Surf. Interface Anal., 2001, 31(6), 492-503. https://doi.org/10.1002/sia.1100
  16. S. J. Han, W. S. Lee, Y. J. Seo, J. Korean Phys. Soc., 2008, 53(9), 2401-2406. https://doi.org/10.3938/jkps.53.2401
  17. Y. K. Lee, W. S. Lee, and Y. J. Seo, J. Korean Phys. Soc., 2008, 53(9), 2485-2490. https://doi.org/10.3938/jkps.53.2485
  18. Y. J. Seo, Microelectron Eng., 2011, 88(1), 46-52. https://doi.org/10.1016/j.mee.2010.08.019
  19. I. Nicic, J. Liang, V. Cammarata, M. Alanyalioglu, U. Demir, C. Shannon, J. Phys. Chem. B, 2002, 106(47), 12247-12252. https://doi.org/10.1021/jp026625w
  20. V. Stamenkovic, N. M. Markovic, Langmuir, 2001, 17(8), 2388-2394. https://doi.org/10.1021/la0014095

Cited by

  1. 전기화학-기계적 평탄화에 관한 연구 동향 분석 vol.37, pp.6, 2020, https://doi.org/10.9725/kts.2021.37.6.213