• Title/Summary/Keyword: Electrochemical Material

Search Result 1,489, Processing Time 0.027 seconds

Electrochemical Etch-stop Characteristics of TMAH:IPA:Pyrazine Solutions (TMAH/IPA/Pyrazine용액에 있어서 전기화학적 식각정지 특성)

  • Chung, Gwiy-Sang;Lee, Chae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hyciroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage(I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20\;{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03\;{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

An Nondestructive Evaluation of Degraded Damage for Superaustenitic Stainless Steel (슈퍼 오스테나이트 스테인리스강의 열화손상에 대한 비파괴적 평가)

  • Kwon, Il-Hyun;Baek, Seung-Se;Iino, Y.;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1332-1339
    • /
    • 2002
  • This research was undertaken to clarify effects of thermal aging on electrochemical and mechanical properties of superaustenitic stainless steel and to detect the material degradation nondestructively. The steel was artificially aged at $300{\sim}650^{\circ}C$ for $240{\sim}10,000h$ and the mechanical properties were investigated at $-196{\sim}650^{\circ}C$ using small punch(SP) test. Also, the change in electrochemical properties caused by effects of thermal aging on superaustenitic stainless steel was investigated using electrochemical anodic polarization test in a KOH electrolyte. Carbides and ${\eta}-phase(Fe_2Mo)$ precipitated in the grain boundaries seem to deteriorate the mechanical properties by decreasing cohesive strength in the grain boundaries and to promote the current density observed in electrochemical polarization curves, The electrochemical and mechanical properties of superaustenitic stainless steel decreased significantly in the specimen aged at $650^{\circ}C$ corresponding to the sensitization temperature for conventional austenitic stainless steels.

Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop (전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

Preparation of nano composite metal-oxide electrode and its application for superrcapacitor (나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용)

  • Kim, Hong-Il;Lee, Ju-Won;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte (Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성)

  • Kim, Hyun-Soo;Kim, Sung-Il;Na, Seong-Hwan;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.

Fabrication of SDB SOI structure with sealed cavity (Cavity를 갖는 SDB SOI 구조의 제작)

  • 강경두;정수태;주병권;정재훈;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.557-560
    • /
    • 2000
  • Combination of SDB(Si-wafer Direct Bonding) and electrochemical etch-stop in TMAH anisotropic etchant can be used to create a variety of MEMS(Micro Electro Mechanical System). Especially, fabrication of SDB SOI structures using electrochemical etch-stop is accurate method to fabrication of 3D(three-dimensional) microstructures. This paper describes on the fabrication of SDB SOI structures with sealed cavity for MEMS applications and thickness control of active layer on the SDB SOI structure by electrochemical etch-stop. The flatness of fabricated SDB SOI structure is very uniform and can be improved by addition of TMAH to IPA and pyrazine.

  • PDF

A study on SOI structures thinning by electrochemical etch-stop (전기화학적 식각정지에 의한 SOI 박막화에 관한 연구)

  • 강경두;정수태;류지구;정재훈;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.583-586
    • /
    • 2000
  • The non-selective method by polishing after grinding was used widely to thinning of SDB SOI structures. This method was very difficult to thickness control of thin film, and it was dependent on equipments. However electrochemical etch-stop, one of the selective methods, was able to accurately thickness control and etch equipment was very simple. Therefore, this paper described with the effect of leakage current and electrodes on electrochemical etch-stop. Consequentially, PP(passivation potential) was changed according to the kinds of contact and contact sizes, but OCP(open current potential) was not change with range of -1.5~-1.3V

  • PDF

A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Ethylene Oxide Group (Ethylene Oxide기를 갖는 Acrylate계 Gel Polymer Electrolyte의 전기화학적 특성에 관한 연구)

  • Kim, Hyun-Soo;Shin, Jung-Han;Moon, Seong-In;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • The gel polymer electrolyte was prepared by radical polymerization using tetra(ethylene glycol) diacrylate and tri(ethylene glycol) dimethacrylate to investigate affect of the number of ethylene oxide. The gel polymer electrolyte showed good electrochemical stability up to 4.5 V vs. Li/Li and high ionic conductivity at various temperatures. The lithium-ion polymer batteries with the gel polymer electrolyte, tetra(ethylene glycol) diacrylate- and tri(ethylene glycol) dimethacrylate-based, also represented good electrochemical performances such as rate capability, low-temperature performances and cycleability. However, the cell with tri(ethylene glycol) dimethacrylate, which has three ethylene oxide, showed better electrochemical performance.

The Fabrication of a SDB SOI Substrate by Electrochemical Etch-stop (전기화학적 식각정지에 의한 SDB SOI기판의 제작)

  • 정귀상;강경두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.431-436
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM respectively.

  • PDF