• 제목/요약/키워드: Electrochemical Detection

검색결과 340건 처리시간 0.026초

Electrochemical Detection of Pesticide in Living Plant and Fish Brain Cell

  • Lee, Chang-Hyun;Ly, Suw-Young
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.941-949
    • /
    • 2010
  • The three electrode system was used to detect the pesticide fenitrothion ($C_9H_{12}NO_5PS$. MW=277.24) using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The working electrode was mercury immobilized on a carbon nanotube paste electrode (Hg-CNTPE). At the optimized condition, the limit of detection (LoD) was 0.6 ppt ($2.16{\times}10^{-12}\;M$), and the relative standard deviation was 0.035% (n=15). And there is more sensitive in detecting fenitrothion than common type carbon nanotube paste electrode. When it was implanted into the brain of live fish (carp), the existence of fenitrothion was measured without any destruction or damage of tissue.

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • 제30권2호
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

Resolution of Salbutamol Enantiomers in Human Urine by Reversed-Phase High Performance Liquid Chromatography after Derivatization with 2,3,4,6-Tetra-O-acetyl-${\beta}$-D-glucopyranosyl Isothiocyanate

  • Kim, Kyeong-Ho;Kim, Tae-Kyun
    • Archives of Pharmacal Research
    • /
    • 제21권2호
    • /
    • pp.217-222
    • /
    • 1998
  • A stereospecific HPLC method has been developed for the resolution of the enantiomers of salbutamol in human urine. After solid-phase extraction and derivatization with 2,3,4,6-tetra-O-acetyl-$\beta$-D-glucopyranosyl isothiocyanate, the diastereomeric derivatives were resolved (Rs=1.83) on $5{\mu}m$ octadecylsilan column using 35% acetonitrile in 0.05M ammonium acetate buffer (pH=6) as a mobile phase with electrochemical detection. The diastereomeric derivatives were formed within 30 min. The detection limit of each enantiomer was 20 ng/ml (S/N=3).

  • PDF

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.

RC 구조물의 Eddy Current 기반 철근부식 감지 센서에 관한 실험적 연구 (Experimental Study on Eddy Current based-on Corrosion Detection Sensor for RC structure)

  • 양현민;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.260-261
    • /
    • 2019
  • Corrosion of rebar embedded reinforced concrete is the main cause of collapse and degradation of reinforced concrete structure that many researches are recently focused on these works. Methods of evaluating rebar corrosion are divided into physical and electrochemical methods. However, the result of Conventional methods are less reliable due to effect of internal and external environments. In this study, rebar corrosion detection sensor for embedded rebar of RC structures is evaluated through immersion test in NaCl solustion for 160hours. From the results, Rebar corrosion was ongoing and corrosion products are produced on rebar surface. The voltage is decreased as amount of corrosion production increased.

  • PDF

붕소가 도핑된 다이아몬드 전극을 이용한 생체화학물질의 검출 (Detection of Bio-chemical by Boron-doped Diamond Electrode)

  • 이은주;등도소;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.167-169
    • /
    • 2002
  • Selective, highly stable determination of serotonin was achieved in cyclic voltammetric measurement carried out at electrochemically treated conductive boron-doped diamond electrode. Boron-doped diamond electrodes were prepared on single crystal Si wafers by microwave plasma chemical vapor deposition and $B_2O_3$ was dissolved in acetone/methanol(9:1) mixture solution so that the B/C weight ratio ca. $10^4ppm$. Serotonin is a kind of indoleamines, which secreted from adrenal marrow cells. The serious problem to detection of serotonin is the interference phenomena of electroactive constituent, including AA. In this study, electrochemical treatment of HDD was carried out to discriminate between serotonin and AA responses. Experimental results showed that the peak potential of AA oxidation shift to the positive direction and the oxidation peak of serotonin was unchanged.

  • PDF

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

An Electrochemical Enzyme Immunochip Based on Capacitance Measurement for the Detection of IgG

  • Yi, Seung-Jae;Choi, Ji-Hye;Kim, Hwa-Jung;Chang, Seung-Cheol;Park, Deog-Su;Kim, Kyung-Chun;Chang, Chulhun L.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1298-1302
    • /
    • 2011
  • This study describes the development of an electrochemical array immunochip for the detection of IgG. Interdigitated immunochip platforms were fabricated by sputtering gold on a glass wafer by using MEMS process and then were coated with Eudragit S100, an enteric polymer, forming an insulating layer over the working area of immunochips. The breakdown of the polymer layer was exemplified by the catalytic action of urease which, in the presence of urea, caused an alkaline pH change. This subsequently caused an increase of the double layer capacitance of the underlying electrode. Used in conjunction with a competitive immunoassay format, this allowed the ratio of initial to final electrode capacitance to be directly linked with the concentration of analyte, i.e. IgG. Responses to IgG could be detected at IgG concentration as low as $250\;ngmL^{-1}$ and showed good linearity up to IgG concentration as high as $20\;{\mu}gmL^{-1}$.

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Simultaneous Voltammetric Determination of Mefenamic Acid and Paracetamol using Graphene Nanosheets/Nickel Oxide Nanoparticles Modified Carbon Paste Electrode

  • Naeemy, Ali;Gholam-Shahbazi, Rozhina;Mohammadi, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.282-293
    • /
    • 2017
  • A new modified carbon paste electrode (CPE) was constructed based on nickel oxide nanoparticles (NiONPs) and graphene nanosheets (Gr) for simultaneous determination of paracetamol (PCM) and mefenamic acid (MFA) in aqueous media and pharmaceutical dosage forms. NiONPs were synthesized via a simple and inexpensive technique and characterized using X-ray diffraction method. Scanning electron microscopy was used for the characterization of the morphology of modified carbon paste electrode (NiONPs/Gr/CPE). Voltammetric studies suggest that the NiONPs and Gr provide a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the NiONPs/Gr/CPE surface. Using cyclic voltammetry, the NiONPs/Gr/CPE showed good sensitivity and selectivity for the determination of PCM and MFA in individually or mixture standard samples in the linear range of $0.1-30{\mu}g\;mL^{-1}$. The resulted limit of detection and limit of quantification were 20 and $60ng\;mL^{-1}$ for PCM, 24 and $72ng\;mL^{-1}$ for MFA, respectively. The analytical performance of the NiONPs/Gr/CPE was evaluated for the determination of PCM and MFA in pharmaceutical dosage forms with satisfactory results.