• 제목/요약/키워드: Electro-mechanical analysis

검색결과 438건 처리시간 0.03초

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

FEM을 이용한 자동차용 배터리 포스트 터미널 클램프의 구조해석 (Structural Analysis of Vehicle Battery Post Terminal Clamp Using FEM)

  • 김용태;박종민;김성관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 2부
    • /
    • pp.966-969
    • /
    • 2011
  • 본 논문에서는 자동차용 Battery Post Terminal Clamp의 응력감소를 위한 설계에 있어, ANSYS Workbench 11.0을 이용한 유한요소 구조해석을 하였다. 체결 시 볼트 조임에 따라 가해지는 힘에 따른 응력집중 및 변형을 고려하였고, Battery Post Terminal Clamp에 응력이 집중되어 소성변형이 예상되는 부분에 대한 형상을 변형 하였을 때, 발생 응력이 극한 인장 강도 이하로 감소됨을 확인하였다.

  • PDF

초음파 모터의 원리 및 개발 현황 (Operating Principle and the States of the Art of Ultrasonic Motor)

  • 한상보;윤신일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1327-1332
    • /
    • 2000
  • Ultrasonic motors have an advantage over conventional electro-magnetic motors because of its excellent characteristics, such as high torque, low speed output, compact size, excellent controllability and, above of all, quite operation. The principle of operation of ultrasonic motors is to generate gross mechanical motion through the amplification and repetition of micro-deformations of active materials. A brief description of working principle and methods of analysis of dynamic behaviors of ultrasonic motors are given for the extended research and development activities anticipated in the mechanical engineering community.

  • PDF

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

잡음 환경 하에서의 전기-역학적 임피던스 기반 조류발전 구조물의 장기 건전성 모니터링 (Impedance-based Long-term Structural Health Monitoring for Tidal Current Power Plant Structure in Noisy Environments)

  • 민지영;심효진;윤정방;이진학
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.59-65
    • /
    • 2011
  • In structural health monitoring (SHM) using electro-mechanical impedance signatures, it is a critical issue for extremely large structures to extract the best damage diagnosis results, while minimizing unknown environmental effects, including temperature, humidity, and acoustic vibration. If the impedance signatures fluctuate because of these factors, these fluctuations should be eliminated because they might hide the characteristics of the host structural damages. This paper presents a long-term SHM technique under an unknown noisy environment for tidal current power plant structures. The obtained impedance signatures contained significant variations during the measurements, especially in the audio frequency range. To eliminate these variations, a continuous principal component analysis was applied, and the results were compared with the conventional approach using the RMSD (Root Mean Square Deviation) and CC (Cross-correlation Coefficient) damage indices. Finally, it was found that this approach could be effectively used for long-term SHM in noisy environments.

회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력 (Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM)

  • 황근배;김경태;황상문
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF

다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안 (Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme)

  • 이석영;남윤기
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

전력 개폐기의 중첩 판 스프링의 충격 피로 해석 (Impact and Fatigue Analysis of Superposed Leaf Spring in Electric Power Switch)

  • 박우진;안길영;정광영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.794-797
    • /
    • 2005
  • The automatic load transfer switch (ALTS), a kind of electric power switch, typically automatically transfers electrical loads from a normal electrical power source to an emergency electrical power source upon reduction or loss of normal power source voltage. It can also automatically re-transfer the load to the normal power source when the normal voltage has been restored within acceptable limits. The transfer operation of ALTS is accomplished by a spring-driven linkage mechanism. In order to control or delay the transfer switching time, the ALTS studied in this paper uses the superposed leaf springs, which are subjected to impact leadings in contacting with electrical contacts. Therefore, to confirm whether the springs has enough mechanical endurance in ALTS, we build a finite element model of the superposed lear springs using LS-DYNA and perform the impact and fatigue analysis.

  • PDF

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System)

  • 남윤의;마사토 이노우에;하루오 이시가와
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

Electro-mechanical Analyses of Thin Film Transistors for Flexible Displays

  • Saran, Neerja;Roh, Nam-Seok;Kim, Sang-Il;Lee, Woo-Jae;Kim, Jong-Seong;Hwang, Tae-Hyung;Hong, Seok-Joon;Kim, Myeong-Hee;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.670-673
    • /
    • 2008
  • Good mechanical properties of thin-film transistors on plastic substrates are an essential parameter in the development of robust flexible displays. In this paper, a careful investigation is carried out on TFT backplane on plastic substrates under cyclic bending conditions. Bending modes of tensile and compressive as well as parallel and perpendicular orientation-dependent bending of channel have been analyzed carefully. This analysis will be helpful in knowing the electro-mechanical performance boundaries of the TFT devices so as to determine the bending limitations of our flexible displays.

  • PDF