• Title/Summary/Keyword: Electro-Hydraulic Servo Valve

Search Result 45, Processing Time 0.026 seconds

Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve (압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어)

  • 이창돈;이상훈;곽동훈;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

A Study on PWM Control of an Electro-Hydraulic Servo Indexing System (전기유압식 서보인덱싱 시스템의 PWM 제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • This study deals with the application of high speed on-off valves to an electro-hydraulic servo indexing system incorporated electro-hydraulic servo valces. Comparing with the electro-hydraulic servo valve the high speed on-off valve has some merits. Which included low price robustness to the oil contamination and dircect control without D/A converter. The considered sys-tem of this study is controlled by pulse width modulation(PWM) of the control law which is pro-duced by a PID controller which is used broadly in industrial equipments. The dynamic character-istics corresponding to variations of system parameters such as inertia moment system gain and supply pressure are investigated by computer simulation and experiment. Consequently the availability of the application of high speed on-off valve to servo indexing system instead of electro-hydraulic servo valve is confirmed.

  • PDF

A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve (전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구)

  • 김고도;김수태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

Modeling and testing for hydraulic shock regarding a valve-less electro-hydraulic servo steering device for ships

  • Jian, Liao;Lin, He;Rongwu, Xu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • A valve-less electro-hydraulic servo steering device (short: VSSD) for ships was chosen as a study object, and its mathematic model of hydraulic shock was established on the basis of flow properties and force balance of each component. The influence of system structure parameters, changing rate of motor speed and external load on hydraulic shock strength was simulated by the method of numerical simulation. Experiment was designed to test the hydraulic shock mathematic model of VSSD. Experiment results verified the correctness of the model, and the model provided a correct theoretical method for the calculation and control of hydraulic shock of valve-less electro-hydraulic servo steering device.

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF

Microcomputer Control of Electronic-Hydraulic Three-Point Hitch for Agricultural Tractor(II) -Performance Test- (농용(農用)트랙터의 3점 히치 시스템의 마이크로컴퓨터 제어(制御)(II) -성능시험(性能試驗)-)

  • Ryu, K.H.;Yoo, S.N.;Kim, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 1992
  • This study was conducted to develop an electro-hydraulic three-point hitch control system using an electro-hydraulic servo valve and microcomputer and to investigate the performance of the three-point hitch control system through indoor and field experiments. 1. The results from indoor experiments coincided with those from computer simulation reported in the previous paper. However, the draft control with the value 4 of Kd showed a slight sustained oscillation after it reached the draft set. 2. From the field experiments, it appeared that the RMS errors increased with the ground speed of tractor. In position control, the three-point hitch control system with electro-hydraulic servo valve showed better performance than that with on-off electro-magnetic valve in the ground speed less than 1.6 m/s. In draft control, however, there was no significant differece in performance between those two systems. 3. In depth control, the both types of electro-hydraulic three-point hitch control system showed better performance than the conventional mechanical-hydraulic three-point hitch control system.

  • PDF

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control (압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어)

  • Lee C.D.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF