• 제목/요약/키워드: Electricity Vehicle

검색결과 137건 처리시간 0.023초

전기 구동 차량의 누설 전류 검출 기법 (The Method for detecting leakage current of a electric vehicle)

  • 박현석;엄정용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.139.1-139.1
    • /
    • 2011
  • Electric vehicle use independent electricity of high voltage. if isolation of electricity is destructed, devices and people are considerably damaged. Therefore, detection of ground fault is necessary for electric vehicle. As the existing detection method of ground fault can not detect ground fault when isolation of both positive side and negative side of electricity is destructed, and change of voltage of electricity. This paper proposed detection method for ground fault of both two sides of electricity and change of voltage. The proposed method is verified by analysis of equivalent circuit.

  • PDF

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • 제21권1호
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

환경친화적자동차 연료소비율 시험방법에 대한 고찰 (Consideration of Fuel Economy Measurement Method for Environmentally Friendly Vehicles)

  • 임종순;권해붕;용기중;맹정열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2009
  • Fuel consumption measurement of Environmentally Friendly Vehicles is considerably different form internal combustion engine vehicle such as Carbon balance method. A practical method of fuel Consumption measurement has been developed for Hydrogen fuel cell vehicles and Electricity Vehicles. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles and Electricity Vehicles on chassis-dynamometer and to give information when the research is intended to develop method to measure Energy consumption.

  • PDF

서울대공원 코끼리 열차 특성에 따른 탑승자의 초극미세입자(Ultrafine Particles) 노출 (Exposures of Ultrafine Particles for Passengers of Elephant Vehicle in the Seoul Grand Park)

  • 주송이;황지희;함승헌;이기영
    • 한국환경보건학회지
    • /
    • 제38권5호
    • /
    • pp.393-397
    • /
    • 2012
  • Objectives: The objectives of this study were to measure passengers' exposure to ultrafine particles (UFP) and to determine effects of fuel, operating condition and position of seat. Method: UFP exposures in front and back seats of the Elephant vehicle in Seoul Grand Park were simultaneously measured by a condensation particle counter (P-Trak model 8525, TSI). The measurements were conducted 7 times with diesel-powered vehicle and 3 times with electricity vehicle in one day. The vehicle stopped at 3 locations along with 2.2 km of driving route. Results: UFP concentration in diesel-powered vehicle was significantly higher than electricity vehicle. At front seat of diesel-powered vehicle, average UFP exposure during stopping was significantly higher than during moving. When diesel-powered vehicle moved, UFP exposure in back seat was significantly higher than in front seat. Conclusions: Passengers in the diesel-powered Elephant vehicle could be exposed to high level of UFP. The UFP exposure was associated with operation condition and position of seat.

Optimal Coordination of Charging and Frequency Regulation for an Electric Vehicle Aggregator Using Least Square Monte-Carlo (LSMC) with Modeling of Electricity Price Uncertainty

  • Lee, Jong-Uk;Wi, Young-Min;Kim, Youngwook;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1269-1275
    • /
    • 2013
  • Recently, many studies have suggested that an electric vehicle (EV) is one of the means for increasing the reliability of power systems in new energy environments. EVs can make a contribution to improving reliability by providing frequency regulation in power systems in which the Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful in increasing power system reliability. This paper presents a stochastic method for optimal coordination of charging and frequency regulation decisions for an EV aggregator using the Least Square Monte-Carlo (LSMC) with modeling of electricity price uncertainty. The LSMC can be used to assess the value of options based on electricity price uncertainty in order to simultaneously optimize the scheduling of EV charging and regulation service for the EV aggregator. The results of a numerical example show that the proposed method can significantly improve the expected profits of an EV aggregator.

What Drives Residential Consumers Willingness to Use Green Technology Applications in Malaysia?

  • OTHMAN, Nor Salwati;HARUN, Nor Hamisham;ISHAK, Izzaamirah
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권10호
    • /
    • pp.269-283
    • /
    • 2021
  • The government policies and initiatives to guarantee sustainable energy and clean environmental conditions contributed to the introduction of green technology electricity appliances in the market. This study sought to determine the physiological and socio-economics-demographic factors driving residential electricity consumers to use green technology electricity appliances, mainly solar PV, smart meter, electric vehicle, and battery storage technology. By understanding consumer intention, the investors of solar PV, battery storage, electric vehicle, and smart meter can estimate the demand and upscale the market for the corresponding products. For that purpose, the intention to use the solar PV, smart meter, electric vehicle, and battery storage function is developed by utilizing the combination of the theory of planned behavior, technology acceptance, and reasoning action. A reliable and valid structured online questionnaire and stepwise multiple regression are used to identify the possible factors that drive consumer behavior intention. The results show that the social influence, knowledge on RE, and perceived price significantly influence residential consumers' willingness to adopt the technologies offered. The findings of this study suggest that the involvement of NGOs, public figures, and citizens' cooperation are all necessary to spread information about the government's objectives and support Malaysia's present energy and environmental policies.

전기동력 자동차 구동부와 제어부 간 절연고장 검출 방법 (The Method for detecting ground fault between power part and controller part of a electricity vehicle)

  • 박현석;조세봉;전윤석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.174-176
    • /
    • 2007
  • Because of accident or leak of electricity, high voltage electricity can be conducted to vehicle chassis and damage human. Therefore the unit for detecting ground fault is necessary to minimize loss of life or equipment damage. Isolation resistance must be monitored for detecting ground fault. GFD(Ground Fault Detection) unit continually generate the pulse voltage between high voltage network and chassis. This will be sensing the returned current, calculate the isolation resistance and make decision the ground fault. This paper describes the method detecting ground fault.

  • PDF

전기자동차 충전기용 보급형 전력량계에 적용 가능한 고조파 왜곡 추정 알고리즘 (Harmonic distortion estimation applicable to a low-end electricity meter for an electric vehicle charger)

  • 김욱현;김경은;박상욱;김영래;전주영
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.710-713
    • /
    • 2022
  • 본 논문에서는 전기자동차 충전시 발생하는 고조파 성분을 매우 높은 차수까지 추정하여 전력량을 계산하되 낮은 연산능력을 가지는 저가의 보급형 전력량계에서도 구동 가능하도록 Goertzel 기반 알고리즘을 제안하였다. 제안된 알고리즘을 사용하여 전력량 계량시 큰 차수의 고조파까지 충분히 고려할 수 있음을 간단한 예제 신호에 대해 시뮬레이션을 통해 검증하였다.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

V2G 시스템에 대한 잠재적 소비자의 선호 평가 (Assessment of the Potential Consumers' Preference for the V2G System)

  • 임슬예;김희훈;유승훈
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.93-102
    • /
    • 2016
  • V2G (Vehicle-to-Grid)는 전기자동차 배터리에 저장된 전기를 전력판매사의 전력망을 통해 되파는 양방향 전력 전송 기술이다. V2G 시스템을 활용하는 전기자동차 운전자는 전기요금이 저렴한 심야에 충전한 뒤 출퇴근시 사용하고 남은 전력을 전력사용량이 많고 전기요금이 높은 주간에 판매하므로, 피크시 전력수급의 안정성이 향상된다. 이에 정부는 V2G 인프라 구축 및 지원 대책을 마련하면서 V2G 시스템에 대한 잠재적 소비자의 선호 정보를 요구하고 있다. 본 논문에서는 잠재적 소비자인 일반 국민 1,000명을 대상으로 한 일대일 개별면접 설문조사를 통해 수집된 자료를 수집하였다. 소비자의 선호를 분석하기 위해 경제학적 기법인 선택실험법을 적용한다. V2G 시스템의 속성으로 잔존 전력량, 전력 판매시간, 의무접속시간, 현행 차량가액에 추가하는 가격으로 평가된 지불의 사액이라는 4개를 고려하였다. 분석모형으로는 우선 다항로짓모형을 적용하였는데 '비관련 대안의 독립성' 가정이 위배되어, 이 가정을 요구하지 않는 중첩로짓모형을 최종적으로 적용하였다. 효용함수의 모든 추정계수는 유의수준 10%에서 통계적으로 유의하였다. 속성별 분석결과, 전력 판매가능시간이 1시간 증가하는 것에 대한 한계지불의사액(MWTP, marginal willingness to pay)은 1,601,057원이었다. 그러나 잔존 전력량이 1% 감소 및 의무접속시간 1시간 증가에 대한 MWTP는 각각 -91,911원 및 -470,619원으로 분석되었다. 본 연구에서 도출한 V2G 시스템에 대한 정량적인 소비자 선호 정보는 향후 V2G 시스템 도입 및 관리정책에 유용하게 활용될 수 있다.