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Abstract: Electric vehicles (EVs) have been growing to reduce energy consumption and 

greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs 

requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission 

electricity production because the GHG emissions are highly dependent on primary sources of 

electricity production. Although previous research has studied solar photovoltaic (PV) -integrated 

EV charging stations, it is challenging to optimize spatial areas between where the charging stations 

are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. 

Therefore, the primary objective of this research is to support decisions of siting EV charging 

stations using a spatial data clustering method integrated with Geographic Information System 

(GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic 

flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV 

charging stations. Under the assumption that EV charging stations should be placed where the 

potential electricity production and traffic flow are high to match supply and demand, this research 

identified three areas for installing EV charging stations powered by rooftop PV in the study area. 

The proposed strategies will drive the transition of existing energy infrastructure into decentralized 

power systems. This research will ultimately contribute to enhancing economic efficiency and 

environmental sustainability by enabling significant reductions in electricity distribution loss and 

GHG emissions driven by transportation energy. 
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1. INTRODUCTION  

Electric vehicles (EVs) adoption has been growing as being expected to reduce energy 

consumption and greenhouse gas (GHG) emissions compared to conventional internal combustion 

engine (ICE) cars in the transportation sector [1]. EVs can bring about a 30-50% reduction in CO2 

emissions in comparison with internal combustion engine vehicles (e.g., diesel, gasoline vehicles) 

[2]. However, the life-cycle GHG emissions of EVs depend on primary sources of electricity [3]. 

In 2019, electricity production depends on its generation, 32% on oil and 27.1% on coal [4], which 

largely affects CO2 emissions. To substitute carbon-intensive energy sources with renewable 

sources, solar photovoltaic (PV) -assisted EV charging stations have been explored [5]. Solar 
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energy, one of the promising renewable resources, can offer low maintenance costs and high 

reliability without other pollutions (e.g., noise, radioactive effluent) compared to the fossil fuels 

causing the global environmental issues.  

Meanwhile, EV adoption has been promoted with the progress of required EV techniques (e.g., 

battery, electric efficiency). According to a study conducted by Deloitte Insight [6], EV sales for 

annual passenger-car and light-duty vehicles have increased about four times (500,000 to 2,000,000 

vehicles) over the last five years (2015 to 2019). Recently, governments have taken action to 

promote EV adoption with the intention of saving people’s fuel costs, cutting pollution, and 

tackling climate change. For example, the European Union (EU) proposed all cars on the roads 

should be zero-emission vehicles by 2050 [7]. United States government sets a goal for EVs, 

achieving 50% vehicle sales share in 2030 [8]. However, EV adoption has often been hindered due 

to the lack of charging stations causing range anxiety in medium and long-distance travel [9]. 

Adequate recharging infrastructure is required to support growing EV adoption [7-8]. Although 

previous research has studied site selection for EV charging stations using a decision-making 

model (e.g., Fuzzy theory) or deep neural network model with Geographic Information System 

(GIS) [10-11], applying low- or zero-emissions energy sources (e.g., solar PV) to the charging 

stations have not been fully discussed. Considering PV as electricity sources for EV charging 

stations is challenging because electricity produced by PV cannot be sent to the power transmission 

facility due to the risks of electrical overloads. Unless spatial relationships between the potential 

solar energy supply and the charging demand are understood, electricity may be wasted without 

being used for charging stations. Thus, while the areas where have the high potential of solar PV 

electricity generation are explored, optimal EV charging stations should be searched based on 

charging demand in the vicinity of the energy production locations 

Therefore, this research aims to support optimal decisions of EV charging stations powered by 

rooftop solar PV using a spatial data clustering method integrated with GIS. This research presents 

optimal charging locations where both heavy traffic flow that can indicate potential EV users and 

high generation efficiency from solar PV are satisfied. The sites are planned to be located in the 

vicinity of PV installed on the rooftops of buildings. The proposed methodology was tested in West 

Lafayette, Indiana, USA. In particular, to find the areas indicating both heavy traffic flow and high 

generation efficiency, this research uses a clustering method that can find patterns tightly packed 

through similar characteristics. Finally, this research can contribute to a new research perspective 

of community energy system transition by reflecting traffic flow and PV power output into the site 

selection assessment for energy efficiency.   

2. DATA AND METHODS  

This research explores and presents adequate installations of EV charging stations connected 

with PV power generation installed in building rooftops based on a case study in West Lafayette, 

IN, USA. We investigated optimal sites that satisfy the positions of PV power generation (i.e., 

supply) and traffic flow (i.e., demand) by a geospatial analysis using GIS. The proposed method 

used the K-nearest neighbors (KNN) algorithm for clustering to identify available and optimal 

locations for EV charging stations. The KNN is one of conceptualization of spatial relationships 

[12] that can determine the interactions and influences of spatial features [13]. 

2.1. Data collection and analysis 

This study used two geospatial data: PV power output and traffic count data. All data were 

digitalized using a uniform coordinate system (i.e., North American Datum (NAD) 1983 Universal 

Transverse Mercator (UTM) 16N) and the same resolution (i.e., 1  1 m2). This paper tested the 

small city of West Lafayette, IN, USA. The study shows a detailed spatial analysis and investigates 
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the optimal sites for installing EV charging stations that are located in the vicinity of PV installed 

in building rooftops. The city of West Lafayette is geographically located at 40.26 north latitude 

and 86.54 west longitude.  

The traffic count data was collected from continuous numerical maps (e.g., polyline layers) to 

compute the hot spot for demand for charging the electricity. These traffic count data were collected 

from the traffic count database system by Indiana Department of Transportation (INDOT) [14]. 

The database contains the average daily traffic value (i.e., the average day of the year) and the 

volume of traffic passing the road, in both directions. The traffic count data were transformed from 

polyline layers to point layers at a fixed interval of 5 m to process the spatial weight analysis.  

Solar PV output data is produced by using the method of area solar radiation in ArcGIS and 

formula of the yearly potential electricity generation of a PV configuration. The solar radiation 

analysis in ArcGIS derives solar radiation from a raster surface [15]. To prepare a raster surface in 

the test area, the digital elevation map (DEM), the representation of elevation of the terrain, was 

computed using a contour map provided from the U.S. Geological Survey (USGS) [16]. The DEM 

map can be generated through three steps: (1) create the terrain with a triangular irregular networks 

(TIN) map; (2) convert the terrain TIN map into a raster image; and (3) combine the terrain raster 

and building raster. First, the contour maps were converted into triangular irregular networks (TIN) 

maps using data management function in geoprocessing tools. Creating a TIN is the method of 

interpolating the elevation of terrain by forming the surface triangulation based on the polylines 

(i.e., contour map). Then, the TIN map was converted into a raster image (i.e., DEM) using the 

data conversion functions in geoprocessing tools. However, this map did not include the elevation 

of artificial objects (e.g., buildings); thus we combined the elevation information of the buildings 

with building footprints. Building footprint data can be obtained from the Open Street Map (OSM), 

but it does not provide building height information. Building height information was extracted from 

lidar point cloud (LPC), which contains the original three-dimensional information of spacing and 

vertical alignment, as laser (LAS) file format from USGS in Figure 1a. The point cloud-based 

surface elevation values were overlayed and joined into the building footprint layer on GIS. The 

building footprints with the height, shown in Figure 1b, were rasterized into a raster image as a 

tagged image file (TIF) format. Finally, the building raster including the height information was 

obtained using the data conversion function, and terrain and building rasters were combined on a 

pixel-by-pixel basis using the raster math function. 

 

Figure 1. Extraction of the height of building from digital surface model (DSM) map as point 

cloud format to two-dimensional based building footprint layer as polygon shapefile format  

Solar radiation was evaluated by using the area solar radiation tool in GIS based on the combined 

elevation map. This tool calculates the solar radiation over a specific location with considering the 

characteristics of geographic (e.g., latitude, longitude) and meteorologic (e.g., sky view factor) 

conditions. This paper generated the yearly solar radiation map for 2020 in West Lafayette, IN, 
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USA. Based on the solar radiation map, the daily electricity generation from the rooftop PV E 

(Wh/day) was estimated using the Equation 1 based on [17]; where 𝑃𝑘 denotes the capacity of PV 

(Wh/year), 𝑟𝑘  denotes the system performance ratio (i.e., default value for roof mounted PV 

systems is 0.75), and 𝐻ℎ,𝑖  denotes the yearly average value of solar irradiation on the inclined 

surface (Wh/m2). Figure 2 shows the daily PV output at the test site. 

 

𝐸 =
𝑃𝑘𝑟𝑘𝐻ℎ,𝑖

365
 × 𝑐𝑒𝑙𝑙 𝑠𝑖𝑧𝑒 (1 𝑚2) (1) 

 

Figure 2. PV output using the area solar radiation tool in GIS 

2.2. Modeling spatial weights 

High/Low Clustering analysis was performed to evaluate spatial cluster of PV power output and 

traffic flow in the West Lafayette based on Getis-Ord Gi statistic using K nearest neighbors (KNN) 

technique in ArcGIS environment [18]. The High/Low clustering statistic is an inferential statistic, 

which means the process of inferring properties of an underlying distribution or continuous of 

probability. The results are interpreted within the context of the null hypothesis, stating that there 

is no spatial clustering of feature values (i.e., complete spatial randomness). The general G statistic 

of overall spatial association is computed using Equation 2 where xi and xj denote the attribute 

values for features I and j; wij is the spatial weight between feature i and j; and n is the number of 

features in the dataset given that the feature i and j cannot be the same feature. The p-value is used 

to reject or retain the null hypothesis and is computed from the z-score. The z-score is the standard 

deviation of spatial patterns based on Equation 3. For example, a high or low z-score (> +2.58 or 

<-2.58) and a small p-value (<0.01) indicate that the null hypothesis can be rejected at a confidence 

level of 99%, which means the dataset can be spatially clustered based on spatial features. When 

the z-score value is positive, the observed general G is higher than expected general G, indicating 

that high values in the attribute (e.g., high values of PV generation/traffic flow) are clustered in the 

study area. The expected general G can be measured using Equation 4.  

 

𝐺 =
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 (2) 

𝑍𝐺 =
𝐺 − 𝐸[𝐺]

√𝑉[𝐺]
 (3) 
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𝐸(𝐺) =  
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛(𝑛 − 1)
 (4) 

3. RESULTS AND FINDINGS  

3.1. Spatial weight evaluation 

In Table 1, the spatial relationships among the features (e.g., PV power output, traffic count) 

were identified using p-value which measures statistical significance to reject or retain the null 

hypothesis with a 99% confidence interval (p-value = 0.01) and z-score which is based on the 

randomization null hypothesis computation (the higher (or lower) the z-score, the stronger the 

intensity of the clustering). As a result, the p-values were found to be less than 0.01 in both cluster 

analysis of PV power output and traffic count. The null hypothesis can be rejected, and it implies 

that spatial patterns are not the result of random processes. The spatial distribution of high or low 

values in the spatially clustered. In that the observed General G index is greater than the expected 

General G with the positive z-score, high values for the attribute are clustered in the study area.  

Table 1. Results of cluster analysis by PV power output and traffic flow. 

Analysis type 
Observed 

General G 

Expected 

General G 
Z score P value Pattern 

PV power output 0.000325 0.000161 15.873 <0.01 Clustered 

Traffic flow 0.000120 0.000076 131.731 <0.01 Clustered 

3.2. Site selection of EV charging stations 

The potential sites of EV charging stations with lower or higher values are extracted in the local 

cluster analysis using the High/Low clustering (Getis-Ord General G, and Cluster and Outlier 

Analysis (Anselin Local Moran`s I). Figure 3 illustrates significant clusters of installed PV 

generation on rooftops of buildings as a supply aspect (Figure 3a) and of traffic flow as a demand 

aspect (Figure 3b). In particular, the clustering analysis is represented by classifying five classes 

from significant clusters (HH, high high) as pink color to low clusters (LL, low low) as sky blue 

color, and even not significant values as gray color in Figure 3. To be specific, the HH class has a 

high value of z-score (>2.58) and high significance of p-value (<0.01), and there is a less than 1% 

likelihood that this high-clustered pattern can be the result of randomness. 
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Figure 3. Clustered areas (high to low value): (a) PV power generation and (b) traffic flow 

In the clustering analysis of PV power output in Figure 3a, four clusters were found in which 

high energy is generated by rooftop PV. In particular, clustered areas appeared in commercial areas 

(1 & 2), a university campus (3), and airports (4). Installation of rooftop PV is more economical in 

the commercial areas or campus buildings where buildings have relatively large rooftop areas than 

in residential areas where many small detached houses are gathered. In addition, the clustering 

analysis of traffic flow in Figure 3b shows that four clusters can be built where there are high traffic 

volumes. High traffic volume roadways were in the university campus, commercial areas, or in the 

areas bridging West Lafayette with neighboring a town (Montmorenci, IN, in the west of the study 

area) and a city (Lafayette, IN, in the east of the case area). The areas with high solar energy 

potentials and high traffic volumes were somewhat overlapped. 

The two clustering analyses are overlayed on a map in Figure 4 to select potential sites for 

installation of EV charging stations. Three areas where both PV power generation and traffic flow 

are very high were selected as suitable sites. In particular, in the first and second candidate sites, 

there are currently no/lack EV charging stations installed; thus it is necessary to install new 

charging stations. On the other hand, at the third candidate site, six EV charging stations are 

currently serving (green markers in Figure 4). On this site, we can consider connecting solar PV 

panels with existing charging stations as low- or zero-emissions energy sources. In addition, the 

fourth candidate area in Figure 3-a, where solar power generation is high but traffic flow is low, 

can be used to transmit electricity to nearby areas through a microgrid approach. By doing so, high-

traffic demand areas can accommodate additional energy to operate charging stations efficiently.  
 

 

Figure 4. Suitable sites for EV charging stations powered by rooftop solar PV 

4. DISCUSSION AND CONCLUSIONS  

Combining EV charging stations with rooftop PV can derive the plan for a forthcoming transition 

of energy management systems while conserving the global environment. This paper presents a 

geospatial analysis-based optimal site selection for installing EV charging stations considering PV 

power generation and traffic flow as supply and demand aspects. The potential installation sites 
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were suggested in the case study, West Lafayette using a clustering method based on spatial weight 

analysis with GIS. The result discovered that in this experiment, traffic flow with PV output can 

be used to investigate the optimal sites for installing EV charging stations represented as highly 

clustered areas in Figure 3~4. EV charging stations are then planned to be installed in areas with 

high production potential and where there is a lot of traffic, such as university, commuting areas, 

and highways. The optimal sites for EV charging stations which can be connected to rooftop PV 

were identified. The results suggested the strategies to build the EV charging stations: (1) 

connecting the installed EV charging stations and rooftop solar PV in the areas where existing EV 

charging stations are already installed and low- and zero- emissions resources are available but not 

used, and (2) installing the EV charging stations newly in the areas where EV charging stations are 

lack or absence and supply and demand is high.  

Previous site selection approaches for EV charging stations have mainly focused on evaluating 

correlation between several criteria (e.g., environment, economy, society) and alternatives (e.g., 

electric power system, transportation system) using decision-making model such as the Bayesian 

network model and fuzzy model [19-20]. On the other hand, this study showed that understanding 

spatial relationships between traffic flow and PV output can be used to identify the potential areas 

for installing the EV charging stations through clustering analysis. Through the proposed clustering 

analysis approach, a viable plan for supplying sufficient electricity to potential EV users can be 

found. In addition, this study can contribute to reducing carbon dioxide emissions by using 

electricity generated not from fossil fuels-based thermoelectric power plants but from solar PV.  

However, the current approach cannot fully include the complex characteristics of traffic flow, 

such as urban density and traffic volume for time intervals due to a relatively simple traffic pattern 

in the study area. Thus, the proposed approach should be improved by extending the model to other 

areas that can present complex built environments, such as urban areas (e.g., Chicago) to generalize 

its usability.  
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