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Optimal Coordination of Charging and Frequency Regulation for an 
Electric Vehicle Aggregator Using Least Square Monte-Carlo (LSMC) 

with Modeling of Electricity Price Uncertainty 
 
 

Jong-Uk Lee*, Young-Min Wi*, Youngwook Kim* and Sung-Kwan Joo† 
 

Abstract – Recently, many studies have suggested that an electric vehicle (EV) is one of the means 
for increasing the reliability of power systems in new energy environments. EVs can make a 
contribution to improving reliability by providing frequency regulation in power systems in which the 
Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful 
in increasing power system reliability. This paper presents a stochastic method for optimal 
coordination of charging and frequency regulation decisions for an EV aggregator using the Least 
Square Monte-Carlo (LSMC) with modeling of electricity price uncertainty. The LSMC can be used to 
assess the value of options based on electricity price uncertainty in order to simultaneously optimize 
the scheduling of EV charging and regulation service for the EV aggregator. The results of a numerical 
example show that the proposed method can significantly improve the expected profits of an EV 
aggregator. 
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1. Introduction 
 

Increases in fuel prices and concern over environmental 
issues have led to alterations in the configuration of power 
systems. In a new energy environment, electric vehicles 
(EVs) are one of the means for increasing the reliability of 
power systems. Some studies [1-5] have demonstrated the 
usefulness of EVs in terms of increasing the reliability of 
power systems in new environments, due to the fact that 
like a battery, EVs can influence both supply and demand. 
For example, electric vehicles can improve the reliability 
of a power system by providing frequency regulation 
through implementing the Vehicle-to-Grid (V2G) technology 
in the power system. The electric vehicle’s ability is 
demonstrated to provide frequency regulation services by 
performing real-time regulation in a practical demonstration 
of V2G [4]. 

Battery capacities of individual electric vehicles are not 
sufficient to satisfy participation conditions for frequency 
regulations set by independent system operator (ISO). 
Therefore, an aggregator is needed for EVs to combine 
individual EVs and participate in frequency regulation 
markets as client representatives. 

In a smart grid environment, the objective of an EV 
aggregator is to maximize its profit by controlling EV 
charging for frequency regulation while simultaneously 
meeting customer needs for services such as maintaining 

battery charge levels. To achieve this dual role, coordinated 
strategies of EV charging and regulation service are vital. 
Maximization of profits for the EV aggregator requires 
optimal coordination of EV charging and regulation 
decisions using the updated real-time data such as the 
market clearing price. 

This paper presents a stochastic method for optimal 
coordination of charging and frequency regulation decisions 
for an EV aggregator using Least Square Monte-Carlo 
(LSMC) [6]. The expected contribution of this method 
originates from the fact that it provides an algorithm for 
EV charging and frequency regulation decisions based on 
an options theory utilizing real-time market data, which 
allows for charging and regulation decisions that are not 
simply scheduled in advance for implementation during 
parking periods, but rather evolve dynamically based on 
hourly decisions. Because an EV aggregator can receive 
hourly price data and other electricity market-related 
information from ISO, the proposed method is designed to 
provide the basis for better, more economical EV charging 
solutions compared to simple prior scheduling methods. 
The information will help the EV aggregator to optimally 
coordinate scheduling decisions for EV charging and 
regulation service. In this paper, an LSMC simulation that 
can evaluate the value of options arising from electric price 
uncertainty is used for optimal coordination of charging 
and frequency regulation decisions for the EV aggregator.  

The remainder of this paper is organized as follows. In 
Section II, technical issues relating to electric vehicle 
charging and frequency regulation are discussed. In Section 
III, a stochastic method for optimal coordination of charging 
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and frequency regulation using LSMC is proposed, and in 
Section IV, numerical results are presented and analyzed in 
order to show the effectiveness of the proposed method. 

 
 

2. Problem Description 
 
The increasing growth of intermittent renewable 

resources in generation mix poses reliability issues for 
power systems. EVs, which can be used to mimic the load 
charging and discharging qualities of batteries, represent 
one possible solution to this problem. However, as the 
battery capacity of a single EV is too small for participation 
in a regulation market, an aggregator of individual EV 
owners is required.  

The objective of this paper is to maximize the profits of 
an aggregator in electricity markets such as regulation 
market by scheduling EV charging and frequency 
regulation based on an evolving charging strategy.  

Profits of the EV aggregator depend on three factors: 
price, capacity, and EV states. There are two types of price 
considered in this study; the real-time regulation market 
clearing price (RMCP) and the real-time energy market 
clearing price (EMCP). As these prices represent future 
values characterized by uncertainties in electricity demand 
and power system conditions, both can be modeled by 
means of stochastic processes. To model the uncertainties 
in the electricity market, various price paths can be 
developed using the Geometric Brownian motion (GBM) 
method [7], and in this study, price scenarios are generated 
using the GBM model. 

Similarly, capacity can refer either to the regulation 
market participation capacity or the energy market 
participation capacity. In this study, it is assumed that 
capacity is fixed based on the performance of the charger. 

In a smart grid environment, The electrical power stored 
in the batteries of an EV can be sold to a power system in 
the energy market energy market. However, as frequent 
large changes in the state of charge (SOC) of an EV due to 
electric power sales to the energy market can shorten its 
battery life, participation in such sales to the energy market 
is not considered in this paper. Based on this restriction, it 
is assumed that an EV can be in one of the three states 
during its expected plug-in time: standing-by (the state of 
the m-th EV at time t, i.e., , 0m tU = ); participating in the 
energy market for EV charging ( , 1m tU = − ); or 
participating in the regulation market for regulation service 
( , 1m tU = + ). These three states are illustrated in Fig. 1.  

Profits of the EV aggregator can be expressed as a 
function of price, capacity, and the EV state as follows: 
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where ,
i
m tU is the state of the m-th EV at time t  in the i-th 

scenario; 0t  is the time at which a charging or regulation 
strategy is implemented; 0tM  is the number of cars at 
time 0t ; d

mt  is the departure time of the m-th EV; iR
tP  

and iE
tP  are the RMCP and EMCP, respectively, at time 

t  in the i-th scenario; and R
mC  and E

mC  are the regulation 
capacity and the battery capacity, respectively, of the m-th 
EV.  

Eq. (1) attempts to maximize the profits of the EV 
aggregator that is defined as the revenue from regulation 
service minus the charging (or energy purchasing) cost. Eq. 
(1) can be more closely tailored to the purposes of this 
study by modifying it so that the state of the EVs at 0t is 
constrained as follows: 
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where 
0,

i
m tU  denotes the state of the m-th EV at time 0t  

in the i-th scenario and i
tJ  is a maximized level of profits 

after time 0t , which can in turn be evaluated as follows: 
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  (3) 
 
Some constraints must be considered in order to 

determine ,
i
m tU : the aggregator should charge the batteries 

to a target SOC, and the batteries cannot be charged above 
100% SOC. These constraints can be expressed as follows: 

Fig. 1. States for EV 
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where T

mSOC  is the target SOC of the m-th EV, and 
0,

i
m tSOC is the SOC of the m-th EV at time 0t in the i-th 

scenario. 
If the battery SOC is too high (i.e., above the criteria 

SOC), the EV cannot provide the V2G service and thus 
cannot participate in the regulation market. This condition 
is given as follows: 
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where CSOC is the criteria SOC. 

On the other hand, if the amount of regulation is less 
than the minimum system regulation requirements at time 

0t , the aggregator cannot participate in the regulation 
market and the EVs will be switched into the standby mode 
as follows: 
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where CR is the minimum regulation amount required by 
ISO for participation in the regulation market. 

In this paper, LSMC is adopted to determine the EV 
charging and regulation strategy in which American 
Options can be exercised at any time between their 
purchase date and expiration date are evaluated [8], [9]. 
This approach can be applied to the problem of how to 
allocate electric vehicle charging and regulation during 
each interval of an exercise. For the purposes stated here, 
the purchase and expiration dates can be replaced by the 
expected plug-in times. 

 
 

3. Optimal Coordination of Electric Vehicle    
  Charging and Regulation Using LSMC 

 
In this section, a proposed LSMC-based method for 

optimal coordination of charging and frequency regulation 
decisions is described. The proposed method consists of a 
stochastic price modeling component and a coordinated 
scheduling of charging and regulation decisions component. 
The first of these components involves EMCP and RMCP 
price-change modeling. In this approach, a GBM model, 
which is able to create various future price path scenarios, 
is adopted to derive a stochastic electricity price. 

The coordinated scheduling of charging and regulation 
component uses LSMC to evaluate many possible charging 
and regulation paths based on the option theory and the 

probability theory.  
 

3.1 Electricity price modeling using GBM  
 
To determine a coordinated electric vehicle charging and 

regulation schedules, the aggregator needs to have the 
future price information. In the proposed method, the GBM 
model is applied to generate future EMCP and RMCP 
based on model parameters estimated from historical data. 
In the GBM model, which is the simplest and most 
commonly used method for price modeling in finance and 
economics, price volatility dP  is defined as follows: 
 
 t tdP Pdt PdZμ σ= +  (7) 
 
where P  represents the price, Z represents a generalized 
Wiener process, and tμ  and tσ  represent the mean of the 
past price change rates and the variance of the past price 
change rate at time t , respectively. 

tμ  and tσ  can be defined as follows: 
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where ,n tP  and ,n t dtP +  represent the prices at times t  and 
t dt+ , respectively, and N  represents the number of past 
price change rate data points. 

As price cannot have a negative value and is commonly 
assumed to follow a log-normal distribution, Eq. (9) should 
be converted into a stochastic process for ( )lnd P . Using 
Ito’s lemma on Eq. (9) produces: 
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where tP  represents the price at time t , and ε  is the 
standardized normal random variable. 

To obtain a ln PΔ  stochastic process, the natural 
logarithm can be substituted into Eq. (10) as follows: 
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where ln PΔ  represents ln t t

t

P
P
+ΔΔ . 

From Eq. (11), t tP+Δ  can be defined as follows: 
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Using Eq. (12) for tΔ  = 1, stochastic processes for 
EMCP and RMCP changes can be obtained as follows:  
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where 1

E
tP+  and 1

R
tP+  are the EMCP and RMCP, 

respectively, at time 1t + , E
tμ  and R

tμ  are the mean of 
past EMCP and RMCP rates of change, respectively, at 
time t , and E

tσ  and R
tσ  are the variance of past EMCP 

and RMCP rates of change, respectively, at time t . 
Based on the price points obtained in Eqs. (13) and (14), 

the price paths for both EMCP and RMCP can be obtained. 
 

3.2 Evaluation of electric vehicle charging and 
regulation scheduling path using LSMC 

 
A coordinated charging and regulation decisions can be 

made by comparing the value of joining the energy market 
(VJEM) with the value of joining the regulation market 
(VJRM) in the following time period. In this study, LSMC 
is applied to draw a comparison between VJEM and VJRM.  

VJEM is the expected cost realizable by charging an 
electric vehicle during the next time period, whereas 
VJRM is the expected revenue from participating in the 
regulation market instead. 

The pricing model from Section 3.1 can be used in order 
to calculate these two values. Based on the electricity price 
information, the aggregator can decide whether to 
participate in the energy market or to participate in the 
regulation market during parking time by calculating the 
VJEM and VJRM: 
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where E
mV  and R

mV  are the VJEM and VJRM, 
respectively, for the m-th electric vehicle in the i-th 
scenario.  

In this study, the value of EV charging is estimated using 
the least-square method, which produces a forecast value 
based on the price at time t . In order to do this, model 
parameters should be obtained by minimizing the 
following residual sum of squares: 
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where 0α̂ , 1α̂ , and 2α̂  are the estimated terms of the 
regression model, respectively, and i refers to the i-th 
generated scenario out of S  total scenarios.  

The charging value during the next time period is 
determined by comparing each estimated value, and the 
value of EV charging for each scenario is recalculated 
using the parameters obtained from Eq. (16). In i-th 
scenario, if VJRM is smaller than this recalculated VJEM, 
then the m-th electric vehicle is charged at time 0t ; 
conversely, for recalculated VJEM smaller than VJRM, the 
m-th vehicle participates in the real-time regulation market 
at time 0t . After determining EVs state each scenario, to 
determine EV charging and regulation decisions, ,( )R

m tE V  
and ,( )E

m tE V , which are the expected values for VJEM and 
VJRM at time t , are compared. ,( )R

m tE V  and ,( )E
m tE V  

can be calculated as follows: 
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where Rn  and En  are the number of scenarios which 
determined participating in regulation market or energy 
market; ,_ iR

m ts V  and ,_ iE
m ts V  are the values of VJRM and 

VJEM determined participating in regulation market or 
energy market in the i-th scenario. 

Based on Eqs. (18) and (19), the charging and regulation 
decisions for the m-th electric vehicle can be determined 
by comparing VJEM with VJRM at time t : 
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3.3 Procedure of proposed method 

 
The proposed algorithm procedure is composed of two 

steps: generation of price scenarios using the GBM model 
and determination of a charging and regulation strategy 
based on the expected profit from the LSMC method.  

The proposed method involves the following steps: 

Step 1)  Prior to 0t , update information on parked EVs, 
RMCP, and EMCP. 

Step 2)  Using historical price data, calculate hourly 
tμ and tσ for the largest d

mt  from Eqs. (8) and 
(9). 

Step 3)  Generate RMCP and EMCP price scenarios from 
0t  to the largest d

mt  from Eqs. (13) and (14). 
Step 4) Determine a value of ,

i
m tU  reflecting the 

constraints for each scenario. 
Step 5)  Using Eqs. (15) and (16), calculate VJRM and 

VJEM for each scenario.  
Step 6) Estimate the regression constants and generate a 

regression model for VJRM and VJEM using Eq. 
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(17). 
Step 7) Recalculate VJEM using the regression model. 
Step 8) Using Eqs. (18-19), determine a value for 

0,m tU by 
comparing VJRM and the recalculated VJEM.  

Step 9) Using Eq. (20), verify whether this solution satisfies 
the minimum requirements for participating in the 
regulation market.  

Step 10) Decide upon a charging and regulation strategies 
for each EV at 0t . 

The overall procedure of proposed algorithm is 
illustrated in Fig. 2. 

 
 

4. Numerical Results 
 
In this section, the numerical results are presented to 

demonstrate the performance of the proposed method. 
There are some assumptions made for these case studies, 
including (i) the aggregator runs a parking lot with 1,500 
single spaces for electric vehicles; (ii) the EV battery type 
is Li-Pb with two capacities, i.e., 16 and 24 kWh; and (iii) 
the EV fleet is assumed to be broken down equally in terms 
of battery capacity. The regulation capacity is assumed to 
be 6.6 kWh; a battery can charge up to 3.3 kWh per hour; 
and the target SOC of all EVs is assumed to be 80%. The 
vehicle parking schedule is summarized in Table 1. 

Based on these parameters, 10,000 MC simulations were 
then conducted. Historical price data for EMCP and RMCP 
during February to March 2012 were obtained from PJM 
[10] in order to generate values of tμ  and tσ  for a 
simulation day (March 31, 2012). 

In the numerical example, the proposed method is 
compared with baseline method and deterministic charging 
method to demonstrate the effectiveness of the proposed 
method. Baseline method attempts to start charging EVs as 
soon as they are parked in the lot following charging of the 
target. On the other hand, deterministic charging method is 
designed to determine charging schedules of EVs based on 
estimated values of EMCP and RMCP for the simulation 
day generated by averaging historical price data for EMCP 
and RMCP over a past week. 

The profit of the aggregator at time t , ( tΩ ), can be 
expressed as follows: 
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Fig. 2. Overall procedure of the proposed method 

Table 1. Number of EVs in the parking time 

1h~19h 8h~19h 8h~24h Initial 
SOC 16 kWh 24 kWh 16 kWh 24 kWh 16 kWh 24 kWh
20% 50 50 150 150 50 50 
30% 50 50 150 150 50 50 

 
Table 2. The profit based on the each charging method 

during hours 8-19 

Capacity
(kWh) 

Initial
SOC
(%) 

The 
number 
of EVs 

Baseline  
method ($) 

Deterministic 
charging 

method($) 

Proposed
method 

($)  
20 150 98.3  98.8 98.7  16  
30 150 98.3  98.8 98.7  
20 150 58.3  58.8 64.6  24  
30 150 78.3  78.9 84.7  

Total  600 333.3  335.2 346.8 
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From the results obtained from the case studies, the 
profits of the aggregator are $727.39/day and $737.21/day, 
respectively, using the baseline method and the 
deterministic charging method. On the other hand, the 
profit of the aggregator is $763.31/day using the proposed 
method. The profit results based on the EV characteristics 
from Table 1 during hours 8-19 are shown in Table 2. 

It can be seen from Table 2 that the average difference in 
profit between the proposed method and the baseline 
method are 4.04%. It can be also observed from Table 2 
that the average difference in profit between the proposed 
method and the deterministic charging method are 3.46%. 
The difference in profit is particularly pronounced at 24 
kWh. Table 3 and Figs. 3, 4 and 5 show a comparison of 
the charging and regulation strategies for 501st EV (24-
kWh-EV) obtained by the proposed method and the other 
methods. It is assumed that the initial EV SOC is 20%, and 
the parking time is from 8:00 to 19:00. 

For the baseline method, charging was done five times at 
the beginning of parking, and after 13:00, the EV 
participated in the regulation market. For the deterministic 
charging method, charging decision was made according to 
charging schedules determined based on estimated values 
of EMCP and RMCP for the simulation day generated by 
averaging historical price data for EMCP and RMCP over 
the past week before the simulation day. Using the 
proposed method, the EV was charged from 12:00-14:00 
and again from 18:00-19:00 and participated in the 
regulation market for the rest of the time. 

Fig. 3 shows results of charging for 501st EV (24-kWh-
EV) by baseline method. It can be seen from Fig. 3 that 

owing to participation in the energy market, net expense 
occurs and the SOC increases from 8:00 to 12:00. After 
reaching its target SOC, the EV earns income by 
participating in the regulation market. Fig. 4 shows results 
of charging for 501st EV (24-kWh-EV) by the 
deterministic charging method. On the other hand, Fig. 5 
shows results of charging for 501st EV (24-kWh-EV) by 
the proposed method. It can be observed from Fig. 5 that 
charging and regulation strategies are followed in order to 
maximize the profit of the aggregator during every time 
interval. A charging decision is taken at 17:00, after which 
the EV starts charging its battery to satisfy the target SOC 
for the remaining time. 

 
 

5. Conclusion 
 
The electric vehicles can contribute to improved 

reliability of power systems by providing frequency 
regulation services. In this paper, a stochastic method for 
optimal coordination of charging and frequency regulation 
decisions for an EV aggregator that adopts an 
interdisciplinary approach to addressing power system 
problems caused by the complex interactions between 
engineering and economics was developed and described.  

The LSMC approach was adopted to solve these 
problems by determining the coordinated schedules of 

Table 3. Results of charging and regulation strategies tU
for 501st EV (24-kWh-EV) from 8:00 to 19:00. 

Time 8 9 10 11 12 13 14 15 16 17 18 19
Baseline 
method -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1

Deterministic 
method +1 +1 +1 -1 -1 +1 -1 +1 +1 -1 -1 +1

Proposed 
method +1 +1 +1 +1 -1 -1 -1 +1 +1 +1 -1 -1

 

Fig. 3. Result of charging for 501st EV (24-kWh-EV) by
baseline method 

Fig. 4. Result of charging for 501st EV (24-kWh-EV) by
deterministic charging method 

 

Fig. 5. Result of charging for 501st EV (24-kWh-EV) by
proposed method 
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electric vehicle charging and regulation through evaluation 
of options based on the electricity price uncertainty.  
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