• Title/Summary/Keyword: Electrically Conducting

Search Result 111, Processing Time 0.021 seconds

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

Effects of HP228 on Analgesia Alone or in Combination with Morphine (새로운 해열, 진통, 소염제인 HP228의 단독 또는 Morphine과의 병용투여가 제통효과에 미치는 영향)

  • Lee, Seung-Gu;Lee, Seung-Hoon;Kim, Tae-Sung;Kim, Hyun-Soo;Kim, Kwang-Min
    • The Korean Journal of Pain
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 1999
  • Background: The new drug HP228 is a cytokine restraining agent with a broad spectrum of anti-inflammatory, analgesic, and antipyretic activity. Six healthy, adult, male volunteers were studied to determine the independent and interactive effects of HP228 and morphine on pain perception. Methods: Two groups of stimuli were applied to each volunteers before drug administration as control, 20 min after morphine and HP228 administration, and 20 min after combined administration of these two drugs. Two adhesive electrically-conducting pads were applied on opposite sides of the arm approximately 8 cm apart. The electrode were connected to an electrical impulse generator and 50 Hz 1 msec pulses of incrementally increasing intensity were delivered at 1 sec intervals. The analgesic endpoints were the current intensity (mA) at which the subject first detected the stimulus (THRESH), the intensity at which the stimulus was first idenfied as being painful (PAIN), and the intensity at which the subject requested that the stimulus be terminated due to discomfort (LIMIT). A second series of stimuli were applied immediately thereafter using 1-sec duration 50 Hz tetanus pulses with increasing intensities at 2~5 sec intervals. Results: There were significant differences between drug treatments (Morphine, HP228, HP228/Morphine) and control (No drugs) in any of the measurements (PAIN, LIMIT) except THRESH with the twitch and tetanus test. Conclusions: The data suggests that HP228 is an analgesic, but it does not appear to interact with morphine in an additive manner.

  • PDF

The Characteristics of Chalcogenide $Ge_1Se_1Te_2$ Thin Film for Nonvolatile Phase Change Memory Device (비휘발성 상변화메모리소자에 응용을 위한 칼코게나이드 $Ge_1Se_1Te_2$ 박막의 특성)

  • Lee, Jae-Min;Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.297-301
    • /
    • 2006
  • In the present work, we investigate the characteristics of new composition material, chalcogenide $Ge_1Se_1Te_2$ material in order to overcome the problems of conventional PRAM devices. The Tc of $Ge_1Se_1Te_2$ bulk was measured $231.503^{\circ}C$ with DSC analysis. For static DC test mode, at low voltage, two different resistances are observed. depending on the crystalline state of the phase-change resistor. In the first sweep, the as-deposited amorphous $Ge_1Se_1Te_2$ showed very high resistance. However when it reached the threshold voltage(about 11.8 V), the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The phase transition between the low conductive amorphous state and the high conductive crystal]me state was caused by the set and reset pulses respectively which fed through electrical signal. Set pulse has 4.3 V. 200 ns. then sample resistance is $80\sim100{\Omega}$. Reset pulse has 8.6 V 80 ns, then the sample resistance is $50{\sim}100K{\Omega}$. For such high resistance ratio of $R_{reset}/R_{set}$, we can expect high sensing margin reading the recorded data. We have confirmed that phase change properties of $Ge_1Se_1Te_2$ materials are closely related with the structure through the experiment of self-heating layers.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

A Study on Adaptive Pattern Null Synthesis for Active Phased Array Antenna (능동위상배열안테나의 적응형 패턴 널 형성에 관한 연구)

  • Jung, Jin-Woo;Park, Sung-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.407-416
    • /
    • 2021
  • An active phased array antennas can not only electrically steer the beam by controlling the weighting of the excitation signal, but can also form a pattern null in the direction of the interference source. The weight of the excitation signal to steer the main beam can be easily calculated based on the position of the radiating element. In addition, the weight of the excited signal for pattern null formation can also be calculated by setting the required radiation pattern and using WLSM(Weighted Least Squares Method). However, in a general wireless communication network environment, the location of the interference source is unknown. Therefore, an adaptive pattern null synthesis is needed. In this paper, it was confirmed that pattern null synthesis according to the required radiation characteristic was possible. And based on this, adaptive pattern null synthesis into the direction of an interference source was studied using a binary search algorithm based on observation area. As a result of conducting a simulation based on the presented technique, it was confirmed that adaptive pattern null forming into the direction of an interference is possible in efficient way.

Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer (공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성)

  • Min, Hyun Sik;Lee, Tae Yeon;Oh, Se Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.545-550
    • /
    • 2011
  • We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.