• Title/Summary/Keyword: Electrical shock

Search Result 405, Processing Time 0.027 seconds

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle in Post Crash (수소연료전지자동차의 충돌시 절연성능 평가방법에 관한 고찰)

  • Lee, Kiyeon;Gil, Hyoungjun;Kim, Dongook;Kim, Dongwoo;Kang, Daechul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.612-618
    • /
    • 2012
  • In this paper, in order to prevent electric shock of high voltage system of HFCV after crash test, insulation performance measurement methods were studied. Under conditions of in-use, insulation performance tests can be divided into measurement method using the vehicle's own RESS as DC voltage source and measurement method using DC voltage from off-vehicle sources. However, these tests can not be applied after a post-crash because parts of high voltage system cover should be removed, and insulation performance can be influenced during these tests. Therefore, we proposed post-crash insulation performance test methods for preventing electric shock through problem analysis of previous post-crash insulation performance tests. Also, test equipment which can measure voltage absence and total energy was developed. We verified performance of the equipment through experiments with vehicle test.

Experimental Study Shock Waves in Superfluid Helium Induced by a Gasdynamic Shock Wave Impingement

  • Yang, Hyung-Suk;Nagai, Hiroki;Murakami, Masahide;Ueta, Yasuhiro
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.43-47
    • /
    • 2000
  • Two modes of shock waves, a compression shock wave and a thermal shock wave, propagating in He II have been investigated. The shock waves are at a time generated by the impingement of a gasdynamic shock wave onto a He II free surface in the newly developed superfluid shock tube facility. Superconductive temperature sensors, piezo-type pressure transducers and visualization photograph were used for the measurement of them and the phenomena induced by them were investigated in detail. It is found that the compression by a compression shock wave in He II causes temperature drop because He II has negative thermal expansion coefficient. the thermal shock wave is found to be of a single triangular waveform with a limited shock strength. The waveform is similar to that generated by stepwise strong heating from an electrical heater for relatively long heating time. In the experiments at the temperatures near the lambda temperature, no thermal shock wave is sometimes detected in shock compressed He II. It can be understood that shock compression makes He Ii convert to He I in which no thermal shock wave is excited.

  • PDF

The Effectiveness Analysis of the Resistive Leakage Current Monitoring by Analyzing the Phase of the Body Current (인체 통전전류 위상 분석을 통한 저항성 누설전류 감시의 유효성 분석)

  • Kim, Jae-Hyun;Lim, Young-Bea;Lee, Sang-Ick;Kim, Dong-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.90-99
    • /
    • 2013
  • To analyze the effectiveness of the resistive leakage current monitoring as a technology preventing electrical accidents, in this paper, we have estimated the phase of the body impedance by using the body impedance model and the body impedance data from IEC. We also have analyzed the phase of the electric body current in the case of 60Hz/220V. From these results, we concluded that deliberate researches about the phase of the electrical body current and related regulations must be carried out before the resistive leakage current monitoring unit is used to protect electric shock. And we concluded that the resistive leakage current monitoring unit can be utilized to prevent electrical fires caused by electric leakage current without unwanted circuit break due to capacitive leakage current flowing from line filter capacitors to the earth.

Analysis of Electric Shock Risk of the Human Body in Underwater (수중에서의 인체에 대한 전격위험성 분석)

  • Kim, Sung-Chul;Kim, Doo-Hyun;Lee, Chong-Ho;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.26-32
    • /
    • 2006
  • The paper considers the electrical shock risk of the human body due to underwater leakage current in electric field. The characteristics of electric shock in fresh water due to the leakage of submerged electric facility in the bathtub in public baths were conducted. The exposed live electrode is modeled as a point source of electric current source. It is assumed that divergent monopole field exists in the vicinity of the current source, regardless of the presence of return electrode and insulating boundary. The electric potentials in the steel bathtub, Diesen and Mole and Flux3D program one are measured according to the distance from leakage source. The results show that the increased shock risk and safe distance are estimated by the bathtub of limited width and the voltage calculated on the basis of a divergent monopole field concept is compared with the measured value.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

A Study on Developmemt of Heat-Emission Prevention Device for SSR (무접점스위치(SSR) 발열 방지 장치 개발에 대한 연구)

  • Lee, Man-Soo;Kim, Jun-Yong;Kim, Jin-Bae
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.25-30
    • /
    • 2019
  • Electric of using in daily life is always exposed to risk of electrical fire and electric shock. Only degree of risk is different, there is no risk free electrical product. Generally, the higher voltage, the risk of electric shock is high. The much electric current, the risk of electrical fire is high. But, we can't help using electric because of risk and we effort to reduce the risk of electrical fire and electric shock. This study deal with the fire prevention generated on heating equipment using SSR for current.

Study of the Electric Shock Risk in Water at the Waterpark, Public Bath (물놀이.입욕시설에서의 수중 감전 위험성 연구)

  • Kim, Chong-Min;Kim, Han-Sang;Kim, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.93-94
    • /
    • 2006
  • This paper presents the evaluation electric shock risk in water so that we made and designed a bathtub which is the same size in real public bath. and then we did an experiment, provided of electric leakage in various conditions so, we measured how to form an electric gradient and knew the electric gradient is formed variously under exposed conductor in water. also we made certain that electric shock risk is down if we insert an insulated pipe in bathtub pipe which is prevent from being formed the electric field sharply.

  • PDF

Analysis of Electrical Equipment and Work Environment for Domestic Small-Scale Construction Site (국내 소규모 건설현장의 전기설비 및 작업환경 분석)

  • Kim, Doo-Hyun;Hwang, Dong-Kyu;Kim, Sung-Chul;Kang, Shin-Uk;Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.42-47
    • /
    • 2014
  • This paper is aimed to investigate and analyze of characteristic for electrical equipment and work environment for the small-scale site. In order to investigate and analyze electrical equipment and work environment for preventing electric shock disaster in construction sites, 50 small-scale construction sites and 12 large-scale construction sites are selected. This paper completed site investigations of low-voltage equipment and the portable electric machine and equipment in 12 large-scale construction sites and 50 small-scale construction sites. The findings were about the electric shock environment relevant to the ground-relevant equipment, the panel board, the protection tools, the sockets, the temporary wiring system, the portable and movable electric machines and equipments in small-scale construction sites. Finally, this study analyzed the domestic and foreign relevant standards and regulations and these findings can be utilized as educational data warning electric shock risk caused by electric equipment in small-scale construction site.

Iatrogenic Spark Burn Injury to the Chest From a Transcutaneous Pacing Patch (경피적 심장 충격 장치의 사용으로 발생한 의인성 전기 화상의 증례 보고)

  • Choi, Jong Yun;Cha, Won Jin;Jung, Ee Room;Seo, Bommie Florence;Jung, Sung-No
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.50-52
    • /
    • 2021
  • Iatrogenic electrical burns that occur from the use of a defibrillator, a paddle-type cardiac shock device, have been reported in various forms. Electrical burns are usually conducted directly through the skin and are more damaging than scald burns or contact burns. A transcutaneous cardiac pacing device is a patch-type cardiac shock device that automatically delivers a shock when an abnormal heart rhythm is detected. We introduce a unique case of iatrogenic electrical burns caused by the transcutaneous pacing patch of a cardiac shock device. Electrical energy was converted into a spark due to foreign bodies deposited around the patch, resulting in damage to the peripheral area of the skin.

Analysis of Electric Shock Accidents and Check Results in Domestic and Foreign low-Voltage Handhole (국내.외 저압지중함 감전사고사례 및 점검결과의 분석)

  • Kim, Chong-Min;Han, Woon-Ki;Bang, Sun-Bae;Kim, Han-Sang;Shim, Keon-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.124-131
    • /
    • 2008
  • Recently underground electrical power distribution is increased because people attach importance to aesthetics of the downtown areas. Lew-voltage handhole of underground distribution line for joint and branch point is mainly installed at the sidewalk. So, pedestrian can get a electric shock if fault is occurred in the low-voltage handhole. Furthermore the street was flooded by recently an unusual change in the weather. Fault is occurred in the low-voltage handhole that may create a shock hazard for the human body because a person's body resistance lower due to effect of water. This paper analyses causes of electric shock accidents and check results at the low-voltage handhole. At a result of analysis, the causes of electric shock accidents in domestic and foreign low-voltage handhole are same but environmental conditions of low-voltage handhole are different In the future, the analytical data can be applied to prevent the electric shock at the low-voltage handhole, and can be used to basic data for the improving installment of low-voltage handhole.