• Title/Summary/Keyword: Electrical power generation

Search Result 2,791, Processing Time 0.099 seconds

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

Assessment of Power Retail Cost by Penetration scenarios of Decentralized Generation in Korean Power System (우리나라 전력계통에서 분산형전원의 구축 시나리오에 의한 전력소매비용평가)

  • Kim, Yong-Ha;Woo, Sung-Min;Oh, Seok-Hyun;You, Jeong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.478-485
    • /
    • 2009
  • This paper describes retail cost through scenario in the ratio of CG(Centralized Generation) and DG(Decentralized Generation) that constructs new generation capacity in the future. it is not calculated for the supply, but for demand considering an advantage of DG. In the Korea Power System, retail cost that composed of construction, T&D, fuel, maintenance and environment shows macro-trend that power system planning through penetration for DG will be more significant.

A Study on Setting of IED for Small Hydro Generation System (소수력 발전시스템을 위한 IED의 정정치에 관한 연구)

  • Ahn, Tae-Pung;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • In order to advance and improve the performance of domestic aged power plants, IEDs have been developed for power generation systems. For smooth installation and operation of the protection relays, a detail settings study of IED is required. This paper deals with an analysis based on PSCAD and setting investigation of IED for loss of field, reverse power protection in Small Hydro Generation System.

Optimal Design of a MW Class SCSG for a Tidal Current Power Generation System

  • Go, Byeong-Soo;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2271-2276
    • /
    • 2015
  • A superconducting synchronous generator (SCSG) can be expected to decrease the size and weight compared to conventional tidal current generators. This paper proposes an optimal design of a 2 MW class SCSG for a tidal current power generation system. The proposed optimal design of the SCSG will reduce the length of the high-temperature superconducting wire as well as the weight and volume of the SCSG. The 3D finite element method is used to analyze the magnetic field distribution. The optimized 2 MW SCSG is compared with a 2 MW conventional generator. As the optimized SCSG is more compact and lighter than a conventional generator, it will be efficiently applied to practical tidal power systems.

Generation Scheduling with Large-Scale Wind Farms using Grey Wolf Optimization

  • Saravanan, R.;Subramanian, S.;Dharmalingam, V.;Ganesan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1348-1356
    • /
    • 2017
  • Integration of wind generators with the conventional power plants will raise operational challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the Generation Scheduling (GS) among the online generating units has become crucial. This process can be formulated mathematically as an optimization problem. The GS problem of wind integrated power system is inherently complex because the formulation involves non-linear operational characteristics of generating units, system and operational constraints. As the robust tool is viable to address the chosen problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is chosen as the main optimization tool. The intended algorithm is implemented on the standard test systems and the attained numerical results are compared with the earlier reports. The comparison clearly indicates the intended tool is robust and a promising alternative for solving GS problems.

A Study on Solar Power Generation Efficiency Empirical Analysis according to Temperature and Wind speed (온도와 풍속에 따른 태양광발전 효율 실증분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Factors that have influence on solar power generation are specified into three aspects such as meteorological, geographical factors as well as equipment installation. Meteorological factors influence the most among the three. Insolation, sunshine hours, and cloud directly influence on solar power generation, whereas temperature and wind speed have impacts on equipment installation. This paper provides explanation over temperature-wind speed equation by calculating influence of temperature and wind speed on equipment installation. In order to conduct a research, pyranometer, anemometer, air thermometer, module thermometer are installed in 2MWp solar power plant located in South Cholla province, so that real-time meteorological data and generating amount can be analyzed through monitoring system. Besides, if existing and new methods are applied together, accuracy of prediction for generating amount is improved.

A Study on the Participation of Virtual Power Plant Based Technology Utilizing Distributed Generation Resources in Electricity Market (분산발전자원을 활용한 가상발전소 기반 기술의 전력시장 참여 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • A virtual power plant (VPP) technology is a cluster of distributed generation installations. VPP system is that integrates several types of distributed generation sources, so as to give a reliable overall power supply. Virtual power plant systems play a key role in the smart grids concept and the move towards alternative sources of energy. They ensure improved integration of the renewable energy generation into the grids and the electricity market. VPPs not only deal with the supply side, but also help manage demand and ensure reliability of grid functions through demand response (DR) and other load shifting approaches in real time. In this paper, utilizing a variety of distributed generation resources(such as emergency generator, commercial generator, energy storage device), activation scheme of the virtual power plant technology. In addition, through the analysis of the domestic electricity market, it describes a scheme that can be a virtual power plant to participate in electricity market. It attempts to derive the policy support recommendation in order to obtain the basics to the prepared in position of power generation companies for the commercialization of virtual power plant.

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

The Auxiliary Power Compensation apparatus for small scale Photovoltaic/Wind Hybrid Generation System (중소형 태양광/풍력 복합발전시스템의 보조 전력보상장치에 관한 연구)

  • Park Se-Jun;Yoon Jeong-Phil;Yoon Hyung-Sang;Lim Jung-Yeol;Kang Byung-Bog;Lee Jeong-Il;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.109-112
    • /
    • 2004
  • Photovoltaic energy and wind energy are very in constant depending on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the solar and the wind generation system have many problems(energy conversion, energy storage, load control etc.) comparing with a conventional power plant. So, in order to solve these existing problems, hybrid generation system of photovoltaic(500W) and wind power(400W), which combines wind power energy and solar energy to have effect of supporting each other, was suggested. But hybrid generation system cannot always generate stable output with weather condition, the auxiliary power compensation apparatus that uses elastic energy of spiral spring to hybrid generation system was also added for the present study. And it may confirm that power was continuously provided to load by storing energy obtained from generating rotary energy of spiral spring generates in small scale generator.

  • PDF

POWER CONTROL OF A DOUBLY FED INDUCTION MACHINE FOR WIND ENERGY GENERATION WITHOUT ROTATIONAL TRANDUCERS

  • Kim, Eel-Hwan;Lee, Sang-Suk;Kuk, Yun-Sang;Kim, Yoon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.40-44
    • /
    • 1998
  • This paper describes variable speed drive and power control of a doubly fed induction machine(DFIM) for wind energy generation without rotational transducers. A stator flux orientation scheme and rotor speed estimator are employed to achieve decouple control of active and reactive power. To verify the theoretical analysis, a 5-hp DFIM prototype system and PWM power converter are built. Results of computer simulation are presented to support the discussion.

  • PDF