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Abstract – Integration of wind generators with the conventional power plants will raise operational 
challenges to the electric power utilities due to the uncertainty of wind availability. Thus, the 
Generation Scheduling (GS) among the online generating units has become crucial. This process can 
be formulated mathematically as an optimization problem. The GS problem of wind integrated power 
system is inherently complex because the formulation involves non-linear operational characteristics of 
generating units, system and operational constraints. As the robust tool is viable to address the chosen 
problem, the modern bio-inspired algorithm namely, Grey Wolf Optimization (GWO) algorithm is 
chosen as the main optimization tool. The intended algorithm is implemented on the standard test 
systems and the attained numerical results are compared with the earlier reports. The comparison 
clearly indicates the intended tool is robust and a promising alternative for solving GS problems. 
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1. Introduction 
 
In power system operation and control, Generation 

Scheduling (GS) is an imperative task that comprises of 
two main sub problems: Unit Commitment (UC) and 
Economic Dispatch (ED). UC may be defined as the 
determination of the units which needs to be committed 
in order to satisfy the load demand. ED is performed to 
determine the load sharing among the online generating 
units. As the load demands are time-varying, the GS 
problem involves the determination of the optimal operation 
strategy over the scheduling horizon subject to a variety of 
constraints. 

Nowadays, integration of Renewable Energy Sources 
(RES) with the existing power system has become essential 
in order to meet the ever increasing load demand. Due to 
stringent environmental concerns and shortage of fossil 
fuels, RES has become the positive alternative from the 
last decades. Among RES, wind energy conversion system 
is expected to produce 10% of global electricity by the year 
2020. 

 
1.1 Wind integrated power system 

 
Wind energy conversion system can potentially affect 

the power system negatively due to the fluctuation in wind 
power. It exhibits variability in its output power because 

of the stochastic nature of wind resources as a result of 
incessant changes in weather conditions. This intermittent 
and diffuse nature of the wind power introduces a new 
factor of uncertainty on the power system operation and 
control.  

Wind power generation is often faced with difficulties 
with regards to reliability in terms of the generation, 
planning and scheduling of electrical power. There is 
always a lack of confidence by the utility operators in the 
system’s capability to meet peak demands. The electric 
power is produced when wind speeds exceed a certain 
minimum and the wind generator output depends on these 
wind speeds. Wind speeds cannot be predicted with high 
accuracy over daily periods, and the wind often fluctuates 
from minute to minute and hour to hour. Consequently, 
electric utility system planners and operators are concerned 
that variations in the output of wind generators may 
increase the operating costs of the system. This concern 
arises because the system must maintain a balance between 
the aggregate demand for electric power and the total 
power generated by all power plants feeding the system. 

 
1.2 Solution methods 

 
The GS problem is a non-linear, large-scale, mixed 

integer combinatorial optimization problem. The exact 
solution of GS can be obtained by complete enumeration 
of all feasible combinations of generating units [1]. Since 
large economic benefits could be achieved from appropriate 
unit scheduling, a considerable attention has been taken to 
development of related solution methods. The solution 
approaches are categorized into analytical, meta-heuristic 
and hybrid methods. The solution methods include dynamic 
programming [2], neural networks [3], simulated annealing 
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[4-6], evolutionary programming [7-9], constraint logic 
programming [10], genetic algorithm [11-12], Lagrangian 
relaxation [13-15], branch and bound [16], tabu search [17-
18], particle swarm optimization [22-23], heuristics and 
Meta-heuristics [28-29] and have been reported to solve 
the GS problem. 

The analytical approaches suffer from the drawback of 
trapping in local solutions and their applications are limited 
to small-scale GS problems. Withal, the meta-heuristic 
methods also have few drawbacks like algorithmic 
parameter settings, premature phenomena and trapping 
into infeasible solution. Hence, it is of great significance 
to improve the existing optimization techniques or exploring 
new optimization techniques to solve GS problem. 

 
1.3 Research gap and highlights 

 
The GS problem is complex in nature and it requires 

complete enumeration to determine the feasible solution. 
Inclusion of wind generation increases further the complexity 
in solution space and identifying the best feasible schedules 
has become tricky. This requires an efficient optimization 
tool to address the wind integrated GS problem.   

Recently, inspiring the hunting mechanism of ant lions 
in nature, the so called Grey Wolf Optimization (GWO) 
algorithm, has been proposed [27, 31]. This algorithm has 
few parameters and easy to implement, which makes it 
superior than earlier ones. Moreover, the GWO has superior 
characteristics than other heuristic techniques in terms of 
improved exploration, local optima avoidance, better 
exploitation and superior convergence characteristics. 

The highlights of this article are as follows:  
i. Wind power generation has been integrated with the 

GS problem. 
ii. Various operational issues including reserve require-

ment are considered. 
iii. GWO algorithm has been applied for the first time to 

solve wind integrated GS problem. 
 

1.4 Paper organization 
 
The mathematical formulation of wind integrated GS 

problem has been detailed in section 2. The implementation 
of GWO for solving the chosen problem is presented in 
Section 3. The simulation studies and attained results are 
discussed in Section 4. Finally, the conclusion is presented 
in Section 5. 

 
 

2. Mathematical Model 
 
The main objective of the GS problem is the mini-

mization of the total operating cost of the generating units 
subject to prevailing system and operational constraints 
over the scheduling horizon. The time horizon adopted this 
paper is one year with the monthly intervals. 

2.1 Wind generator model 
 
The power output from the wind plant is set by the 

power curve. The curve is usually plotted between output 
power and wind speed. The wind unit is designed to start 
generating once the speed reaches the cut-in speed (Vci) and 
to shut down for safety reasons at the cut- out speed (Vco).  
The region between the rated speed and also the cut out 
speed is wherever the unit generates the constant rated 
power. The non-linear relationship between the power 
output and the wind speed when the wind speed lies within 
the cut-in speed and the rated speed. 

The power generation (Pi) of the wind unit for various 
wind speeds (SWi) is often expressed as follows: 
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where, A, B and C are the constants and are defined as 
follows [22]: 
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2.2 Operating cost model 

 
The operating cost comprises of total generation cost, 

including fuel cost, the operation and maintenance costs. 
This can be mathematically expressed as:  
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where,   
 

( )( ) ( ) ( ) 2, . , . ,G D g g G D g G DF P g t a b P g t C P g t= + +  (4) 

 
2.3 System and operational constraints 

 
i) Power balance constraint 
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ii) Reserve requirement 
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iii) Wind power availability 
The generating unit constraints should be satisfied so 

that the wind power availability can be described as shown 
below: 

 
 ( ) ( ), ,w avP w t W w t≤  (7) 

 
iv) Generation limits 

 
 ( ) ( )Gg,min Gg,maxP , , PGD GRP g t P g t≤ + ≤  (8) 

 
 
3. Grey Wolf Optimization to RES Coordinated 

Power System 
 

3.1 GWO in brief 
 
The GWO algorithm resembles the leadership hierarchy 

and searching mechanism of grey wolves [27, 31]. In the 
societal hierarchy, grey wolves are categorized as alpha (α), 
beta (β), delta (δ) and omega (ω). The alphas are the 
dominant because the group follows his/her instructions 
and the betas; the secondary wolves assist the alphas in 
making decisions. Omega is the lowest ranking grey 
wolves. If a wolf is neither an alpha nor a beta, or an 
omega, he/she is called delta (sub-ordinate). Delta wolves 
come in the hierarchy next to the alphas and betas, but 
they lead the omega. In addition to the social hierarchy 
of wolves, group hunting is another appealing societal 
action of grey wolves. 

The primary segments of GWO are encircling, hunting 
and attacking the prey. These steps are formulated 
mathematically to determine the best feasible solution for 
any optimization problem. 

The mathematical modeling of encircling behavior is 
defined as, 

 . ( ) ( )pD C X t X t= −  (9) 

 ( 1) ( ) .pX t X t A D+ = −  (10) 
 

where, t indicates the current iteration, A  and C are 
coefficient vectors, Xp is the position vector of the preyand 
X  indicates the position vector of a grey wolf. 

The vectors  A and C  are calculated as follows: 
 

 12 .A a r a= −   (11) 

 22.C r=   (12) 
 

where components of a are linearly decreased from 2 to 0 
over the course of iterations and r1, r2 are random vectors 
in [0, 1]. 

The first three best solutions obtained are saved and the 
other search agents (including the omegas) update their 
positions according to the position of the best search agent. 
The following formulas are proposed in this regard. 

 
 α 1D .C X Xα= −     (13) 

 β 2D .C X Xβ= −     (14) 

 δ 3D .C X Xδ= −     (15) 

 ( )1 1X .X A Dα α= −   (16) 

 ( )2 2X .X A Dβ β= −   (17) 

 ( )3 3X .X A Dδ δ= −   (18) 

 ( ) 1 2 3X X X
X t 1

3
+ +

+ =   (19) 

 
The ‘A’ is an arbitrary value in the gap [-2a, 2a]. When 

|A| < 1, the wolves are forced to attack the prey. Attacking 
the prey is the exploitation ability and searching for prey 
is the exploration ability. The random values of ‘A’ are 
utilized to force the search agent to move away from the 
prey. When |A| > 1, the grey wolves are enforced to diverge 
from the prey. The computational flow of GWO for solving 
optimization problem is detailed in Fig. 1. 

 
3.2 GWO implementation to GS problem 

 
The algorithmic steps of GWO for solving GS problem 

are detailed below. 
Step 1: Read the system data. 
Step 2:  Initialize the value of parameter such as 

population size (pop) maximum number of iteration 
(iter_max) and the vector variables (a, A and C).  

Step 3: Initialization: In this process, a set of individual 
solutions is created in a random order. The positions of 
individual i in period t can be represented by a vector as,  
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Fig. 1. Computational flow of GWO 
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The initialization procedure is as follows: 
3(a): The load contribution of thermal unit is obtained 

by,  
 

 , ,max ,min ,min[ ]GDig t Gg Gg GgP P P P= − +     (20) 
 
The load contribution of wind unit w,  
 

 , ( , )WiW t avP W w t=    (21) 
 
3(b): The value of the each unit is determined from the 

net system demand.  
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3(c): If   (PGDig,t)new<PGg,min, then, 

(PGDig,t)new = PGg,min 

Elseif (PGDig,t)new>PGg,max, then, 

(PGDig,t)new = PGg,max 
 

3(d): If , ,
1 1
( ) ( )

G W

Gdig t new Wiw t d
g W

P P P t
= =

+ =∑ ∑ then go to 

next step, otherwise go to step3a. 
3(e): Set the reserve power of each unit (PGRig,t)for each 

section of i,  
 

 ( )
, ,max ,

,
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Otherwise, it is zero.  

3(f): If , ,
1 1

( )
G W

GRig t R Wiw t
g W

P P t RESW P
= =

≥ + ×∑ ∑ then go 

to next step, otherwise go step 3e. 
3(g): Stop the initialization process. 
 
Step 4: Evaluate the objective function given and 

compute the fitness subject to variety of constraints. An 
individual having minimum fitness is mimicked as alpha 
(α), second minimum as beta (β) and third minimum as 
delta (δ). 

Step 5: Update the position of the wolves using [27] 
considering constraints. The position updating process 
considering constraints is as follows: 

5(a): PGDig,t, PGRig,t, PWiw,t are calculated by the following 
equation. 
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5(c): The value of the each unit is determined by the 
following equation. 
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5(d): If the 1
,( )j

newGDig tP + is in the range of its operating 

region of unit g then go to next step otherwise go step 5c. 

5(e): If 1 1
,,

1 1
( ) ( )

G W
j j

new dWiw tGdig t
g W

P P P t+ +

= =
+ =∑ ∑ then go to 

next step otherwise go to step 5h. 
5(f): The load contribution of thermal unit is obtained by 

the following equation 
 

1 1 1
,max, , ,[ ) ] ( ) 0j j j

Gg new newGDig t GDig t GDig tP P P If P+ + += − ≠
 

 (26) 
 

5(g): If 1 1
,,

1 1
( )

G W
j j

R Wiw tGRig t
g W

P P t RESW P+ +

= =
≥ + ×∑ ∑  then 

go to step 5h, otherwise go step 5f. 
5(h): Above procedure must be repeated for all time 

periods and then stop the updating process. 
 
Step 6: Update the vector values (a, A, C). 
Step 7: Compute the fitness subject to constraints and 

find the new values of alpha (α), beta (β) and delta (δ). 
Step 8: Termination criterion: Repeat the procedure 

from (5) – (7) until iter_max is reached. 
 

4. Case Studies and Discussions 
 
The intended GWO algorithm is developed in Matlab 

platform and is executed on a personal computer with the 
hardware configurations of Intel i3 2.30 GHZ processor 
and 4GB RAM. The algorithm is implemented on the 
standard test systems. In all test cases, 2 wind farms are 
considered and each wind farm possesses 40 wind turbine 
units with 2 MW capacities [22]. In this work, the RESW is 
assumed to 10% of total wind power availability of each 
wind farm [22]. 

Parameter selection is the vital important for the 
implementation of GWO in the generation scheduling. 
Parameter sensitivity analysis is performed and based on 
the analysis the desirable parameters are identified as pop = 
50 and iter_max =100. 

 
4.1 Test cases 

 
The test system 1 contains 12 generating units with 10 

conventional units and 2 wind farms (units 11 and 12) 
(10C+ 2W). The input data, load percentage in each time 
interval, wind speed and wind power availability of the two 
wind farms for the test system 1 are obtained from 
[22].The annual peak load is specified as 1500 MW. 

The simulation is conducted and the attained costs are 
detailed in Table 1. The reserve requirement of the third 

Table 1. Fixed and variable costs for test system1 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Pd (MW) 1317 1320 1125 1255.5 1350 1344 1320 1200 1170 1321.5 1410 1500 

% of Peak load 87.8 88 75 83.7 90 89.6 88 80 78 88.1 94 100 
Fuel Cost*108$ 2.47 2.48 2.37 2.45 2.50 2.48 2.47 2.43 2.42 2.47 2.50 2.61 
Variable OMT 

*103 $ 1.78 1.79 1.58 1.71 1.81 1.81 1.79 1.65 1.63 1.79 1.87 1.95 

Fixed OMT($) 7.29E+03 7.32E+03 5.97E+03 10684 7.44E+03 10684 10684 10684 10684 10684 10684 10684
Variable OMW($) 24.16 65.84 5.66 24.16 94.92 24.16 24.16 5.66 5.66 24.16 39.04 24.16

Fixed OMW($) 0 0 0 0 0 0 0 0 0 0 0 0 
Cost (M$) 247.14 247.29 240.52 245.06 247.76 247.85 247.29 242.91 241.87 247.24 249.54 260.95

 
Table 2. Feasible dispatches for test system 1 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Pd (MW) 1317 1320 1125 1255.5 1350 1344 1320 1200 1170 1321.5 1410 1500 

% of Peak  
load 87.8 88 75 83.7 90 89.6 88 80 78 88.1 94 100 

1 455 455 455 455 455 455 455 455 455 455 455 455 
2 244.8 250.1446 259.953 170.644 266.809 270.297 250.144 150 150 248.439 330.3 390.844
3 20 20 20 20 20 20 20 22.7041 20 20 20 37.9888
4 130 130 130 130 130 130 130 130 130 130 130 130 
5 162 162 25 162 162 162 162 162 162 162 162 162 
6 80 80 20 80 80 80 80 44.0959 28.2528 80 80 80 
7 85 85 78.0603 85 85 85 85 85 85 85 85 85 
8 55 55 55 55 55 55 55 55 55 55 55 53.2577
9 10 10 10 10 10 10 10 10 10 10 10 10 
10 55 55 43.0225 55 55 55 55 47.8896 47.0742 55 55 55 
11 3.576 2.23 3.717 9.817 14.604 11.905 2.23 9.122 12.097 4.937 6.007 8.973 
12 16.607 15.675 25.718 23.076 16.607 9.798 15.675 29.202 15.529 16.119 21.715 32.676

Total MW 1317 1320.04 1125 1255.53 1350.02 1344.00 1320.04 1200.0 1170 1321.5 1410 1500 
Cost (M$) 247.14 247.29 240.52 245.06 247.76 247.85 247.29 242.91 241.87 247.24 249.54 260.95
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period 59.1935 MW is the summation of the two parts; the 
first part is 56.25 MW (5% of the total load) and the 
(power availability). The cost split up for each interval is 
evaluated separately for both the conventional units and the 
wind units are evaluated and presented in Table 1. The cost 
split up consists of the fuel cost, fixed and variable costs 
for thermal and wind units. From Table 1, it is found that 
the wind units do not posses any fixed costs. The best 
feasible generation schedules and the associated costs 
attained using GWO are detailed in Table 2. The total 
operating costs attained by GWO is compared with earlier 
reports and the comparison is presented in Table 3. The 
comparison clearly indicates that the GWO settles with the 
least cost schedules.  

Further, the GWO algorithm is implemented on the three 
different sizes of test systems. Test systems 2, 3 and 4 
comprises of 15, 26 and 40 generating units respectively. 
The peak load demands are taken as 2630 MW, 2700 MW 
and 9500 MW for test systems 2, 3 and 4 respectively. The 
load demand for each interval is computed as detailed in 
test system 1. 

 
4.2 Total operating costs comparison 

 
The GWO algorithm is implemented on four different 

test systems and the attained total operating costs are 
compared with the earlier reports. The comparison is 
presented in Table 3. The minimum and average of 
generation costs attained by GWO is compared with 
Global variant based Passive Congregation PSO – 
Constriction Factor Approach (GPAC+CFA) [22] and PSO- 
Inertia Weights Approach (PSO+IWA) [22] methods. 

For test system 1, the average cost of generation with 
GPAC+CFA and PSO+IWA are 256.6246M$ and 256.41 
M$ respectively. The cost of generation attained by the 
GWO is to be 240.4485M$ which is cheaper than both 
methods. For test system 2 (15C+2W) has the cost of 
generation with GWO as 260.9033M$ which is lesser than 
the other methods of 263.2219 M$ and 264.2486 M$. The 
cost of generation achieved by the intended method for the 
test system 3 (26C+2W) is also comparatively cheaper than 
other methods. Similarly for the test system 4 (40C+2W) 

the cost of generation of proposed method 887.4475 M$ is 
found to be cheaper than the GPAC and PSO, the cost for 
which are 918.0216 and 910.6416 M$. From the Table 3, 
it is confirmed that the GWO provides the least cost 
schedules for all test systems. It also confirms that the 
intended tool works well even for large scale systems. 

 
4.3 Convergence and robustness behaviors 

 
In population based algorithms, the number of 

individuals in a population is an important parameter that 
decides the search capability of the algorithm in the 
solution space. As GWO is a population based swarm 
intelligence algorithm, change in population sizes affects 
its performance. The desirable population size is found to 
be related to the problem dimension and complexity. 
Moreover, when the number of population size increases, 
the execution time also increases. The selection for 
number of wolves to be produced in each generation is a 
compromise between a wider exploration of the search 
space and increased computational burden. Due to the 
stochastic nature of the GWO algorithm many trials are 
required to find out the optimum results. 

First, the GWO algorithm is implemented on test system 
1 for different population sizes such as 10, 20, 30, 40 and 
50. The algorithm is executed for different trails and the 
attained robustness characteristics of the GWO algorithm 
are presented in Fig. 2. Further, the minimum and average 
values of the attained total operational costs are also 
presented in Table 4. 

From Fig. 2 and Table 4, it is clear that the population 
size 50 is desirable parameter for the chosen GS problem 
as it resulted in achieving global solutions more 
consistently. Increasing the population sizes beyond this 
value did not produce any great significant improvement; 
rather, it increases the execution time. Hence, the 
population size of 50 is chosen to achieve the optimal 
results. 

Table 3. Comparison of total operating costs 

Test Systems Methods Minimum 
(M$) 

Average 
(M$) 

GPAC+CFA[22] 251.3254 256.6246 
PSO+IWA[22] 252.4464 256.41 Case1 (10C+2W) 

GWO 238.18 240.4485 
GPAC+CFA[22] 260.735 263.2219 
PSO+IWA[22] 260.712 264.2486 Case2 (15C+2W) 

GWO 259.03 260.9033 
GPAC+CFA[22] 298.9714 304.8163 
PSO+IWA[22] 293.6009 297.9482 Case3 (26C+2W) 

GWO 292.04 295.3116 
GPAC+CFA[22] 898.3872 918.0216 
PSO+IWA[22] 883.8288 910.6416 Case4(40C+2W) 

GWO 881.204 886.327 
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Fig. 2 Robustness characteristics for proposed GWO in 
test system 1 
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Table 4. Total operational costs attained by GWO for 
various population sizes (Test system 1) 

Population 
size 

Minimum cost 
(M$) 

Average cost 
(M$) 

10 239.29 243.944 
20 239.32 242.355 
30 239.34 241.628 
40 238.29 242.9689 
50 238.18 240.4485 
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(b) Test System 2 (15C+2W) 

0 10 20 30 40 50 60 70 80 90 100
290

295

300

305

310

315

320

 ITERATION

T
ot

al
 G

en
er

at
io

n 
co

st
 (
M

$)

 
(c) Test System 3 (26C+2W) 
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(d) Test System 4 (40C+2W) 

Fig. 3 Convergence characteristics with 100 iterations of 
GWO 

5. Conclusion 
 
This paper presents the application of modern bio-

inspired algorithm GWO for solving the GS problem in 
power systems. The GS problem has been formulated for 
the wind integrated power system with the main objective 
of minimizing the total operational cost subject to variety 
of constraints. The GWO algorithm has been implemented 
on different scale of test systems. The system and 
operational constraints are handled effectively. The attained 
numerical results are compared with the recent reports in 
order to validate the solution quality. The concluding 
remarks of the article are: 

 The GWO is applied for the first time to solve wind 
integrated GS problem. 

 The least cost schedules are presented for four 
different test systems. 

 As the intended tool provides the best feasible solution 
for 40C+2W test case, the algorithm is highly suitable 
for large scale systems.  

 
The photovoltaic cells can be integrated with the 

existing GS problem in order to meet out the upcoming 
power demands. 
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Nomenclature 
 

ag, bg,cg coefficients of generating unit g 
n(t) number of hours in time t 
NG number of thermal generators 
NW number of wind units 
OMFCT(g) operation and maintenance fixed cost of 

thermal unit g 
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OMFCW(w) operation and maintenance fixed cost of wind 
unit w 

OMVCT(g) operation and maintenance variable cost of 
thermal unit g 

OMVCW(w) operation and maintenance variable cost of 
wind unit w 

PR (t) a fraction of total system load for system 
reserve  

PW (w,t) generation of wind unit w at time t (MW) 
PW,max maximum generation of wind unit w 
Pd (t) system demand at time t  
PGD(g,t) load contribution of thermal unit g at time t 

(MW) 
PGg,max upper limit of thermal unit g 
PGg,min lower limit of thermal unit g 
PGR (g,t) reserve contribution of thermal unit g at time 

t (MW) 
RESW a fraction of total wind power employed to 

compensate wind power prediction error  
T number of periods under study 
U(g,t) commitment state of thermal  
 unit g at time t (on=1; off=0) 
V(w,t) commitment state of wind unit w at time t 

(on=1; off=0) 
w index for wind unit 
Wav(w,t) maximum available wind power of wind unit 

w at time t 
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