• Title/Summary/Keyword: Electrical parameter estimation

Search Result 556, Processing Time 0.047 seconds

A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM

  • Wang, Yangding;Xu, Shen;Huang, Hai;Guo, Yiping;Jin, Hai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2344-2353
    • /
    • 2018
  • A coupled recursive total least squares (CRTLS) algorithm is proposed for parameter estimation of permanent magnet synchronous machines (PMSMs). TLS considers the errors of both input variables and output ones, and thus achieves more accurate estimates than standard least squares method does. The proposed algorithm consists of two recursive total least squares (RTLS) algorithms for the d-axis subsystem and q-axis subsystem respectively. The incremental singular value decomposition (SVD) for the RTLS obtained by an approximate calculation with less computation. The performance of the CRTLS is demonstrated by simulation and experimental results.

Model Reference Adaptive Control of a Linear Time-Varying System with an Additional Compensation Term (추가 보정항을 이용한 시변 시스템의 기준 모델 적응 제어)

  • Lee, Dong-Hyun;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.54-57
    • /
    • 2002
  • In this paper model reference adaptive control (MRAC) of linear time-varying(LTV) systems is considered. MRAC for a linear time invariant(LTI) system does not assure the boundedness of the output and parameter estimation errors in the presence of time variations of the parameters. However, changing the adaptive laws such as use of $\sigma$-modification can result in the boundedness of the output and parameter estimation errors[5]. Together with the $\sigma$-modification in the adaptive law, we also modify the control law by adding an additional term to the standard control law. The additional term leads to smaller bounds of the output and parameter estimation errors when compared to the case where only the standard control law is applied.

  • PDF

A Study on the Equivalent Circuit and Parameter Estimation of I.M for Steady state. (정상상태시 유도전동기의 등가회로 및 정수산정에 관한 연구)

  • Baek, Soo-Hyun;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.80-82
    • /
    • 1988
  • This paper proposed a new equivalent circuit and parameter estimation for I.M, which is different from T type and L type equivalent circuits. By using this circuit, we can analyze the torque of I.M, such as seperately exited D.C Motor, further more, we think that this equivalent circuit is effective to the vector control system for I.M.

  • PDF

Real-Time Identification and Estimation of Transformer Tap Ratios Containing Errors

  • Kim, Hongrae;Kwon, Hyung-Seok
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.109-113
    • /
    • 2002
  • This paper addresses the issue of parameter error identification and estimation in electric power systems. Parameter error identification and estimation is carried out as a part of the state estimation. A two stage estimation procedure is used to detect and identify parameter errors. Suspected parameters are identified by the WLAV state estimator in the first stage. A new WLAV state estimator adding suspected system parameters in the state vector is used to estimate the exact values of parameters. Supporting examples are given by using the IEEE 14 bus system.

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

A Method of Visualization and Fast Estimation of Parameter in Continuous Time Signal (연속적인 신호에서 고속 파라미터 추정과 시각화 방법)

  • Kim, Heon-Tea;Shim, Kwan-Sik;Nam, Hea-Kon;Choi, Joon-Ho;Lim, Yeong-Chul;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.84-93
    • /
    • 2010
  • This paper describes a method of visualization and fast estimation of parameter in continuous time signal. The parameter estimation method of this paper directly estimate the parameters on the basis of the discrete Fourier transform. Also, this paper present to efficient visualization method of dominant parameters obtained in continuous time signal. The proposed methods are applied to test functions with three dominant modes. The results show that the proposed methods are highly applicable to parameter estimation and visualization in continuous time signal.

Noisy Parameter Estimation of Noisy Passive Telemetry Sensor System using Unscented Kalman Filter (잡음환경에서 UKF를 이용한 원격센서시스템의 파라메타 추정)

  • Kim, Kyung-Yup;Yu, Dong-Gook;Choi, Woo-Jin;Lee, Kwan-Tae;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1787-1788
    • /
    • 2006
  • In this paper, a noisy passive telemetry sensor system using Unscented Kalman Filter (UKF) is proposed. To overcome these trouble problems such as a power limitation and a estimation complexity that the general passive telemetry sensor system including IC chip has, the principle of inductive coupling was applied to the modelling of a passive telemetry sensor system (PTSS) and its noisy capacitive parameter was estimated by the UKF algorithm. Specialty, to show the effective tracking performance of the UKF, we compared with the tracking performance of Recursive Least Square Estimation (RLSE) using linearization

  • PDF

A Novel Sliding Mode Observer for State of Charge Estimation of EV Lithium Batteries

  • Chen, Qiaoyan;Jiang, Jiuchun;Liu, Sijia;Zhang, Caiping
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1131-1140
    • /
    • 2016
  • A simple design for a sliding mode observer is proposed for EV lithium battery SOC estimation in this paper. The proposed observer does not have the limiting conditions of existing observers. Compared to the design of previous sliding mode observers, the new observer does not require a solving matrix equation and it does not need many observers for all of the state components. As a result, it is simple in terms of calculations and convenient for engineering applications. The new observer is suitable for both time-variant and time-invariant models of battery SOC estimation, and the robustness of the new observer is proved by Liapunov stability theorem. Battery tests are performed with simulated FUDS cycles. The proposed observer is used for the SOC estimation on both unchanging parameter and changing parameter models. The estimation results show that the new observer is robust and that the estimation precision can be improved base on a more accurate battery model.

Communication Cable Fault Localization Based on Chirp Signal Parameter Estimation (첩 신호 파라메터 추정 기반 통신 케이블 고장점 탐지에 관한 연구)

  • Lee, Chun-Ku;Han, Seul-Gi;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1782_1783
    • /
    • 2009
  • Reflectometry that has been used to localize faults on a cable is introduced. One of the key point of reflectometry is finding time delay between the incident and reflected signals. In this paper, we propose new reflectometry that use Gaussian enveloped linear chirp signal, and use Kalman filter to estimate frequency rate parameter of the chirp signal. From the estimated frequency rate parameter, we can measure the time delay. In a simulation assuming open ended cable, the proposed method is proved to give a good estimation results.

  • PDF