• Title/Summary/Keyword: Electrical length

Search Result 2,453, Processing Time 0.024 seconds

Fabrication of long length Bi-2223/Ag HTS tape (Bi-2223/Ag 고온초전도 장선재의 제조)

  • Kim, Sang-Cheol;Lee, Dong-Hoon;Ha, Dong-Woo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.69-72
    • /
    • 2004
  • In order to use HTS tape on electric power applications, such as cable, motor, transformer, fault current limiter, a long length of HTS tape with a good uniformity of critical current is inevitable. The longer length of HTS tape, the wider in the range of application and the lower cost of HTS tape. In this study three long length Bi-2223/Ag tapes(268m, 253m and 187m) were fabricated. Critical current uniformity along the length was greatly improved through the optimization of cold deformation and thermo-mechanical process. Average critical current of the tapes was 63.2 A, 54.6 A and 64.2 A, respectively Critical tensile strength and critical bending radius (77 K, 5 % Ic degradation) was 135 MPa and 56 m, respectively.

  • PDF

Effects of three side ratios of the rectangular substrate on the resonant characteristics of the ultra-small size resonator using its length extensional vibration (사각 기판의 외형비가 길이진동을 이용하는 초소형 공진자의 공진특성에 미치는 영향)

  • 한성훈;김병효;이개명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.877-880
    • /
    • 2000
  • The length extensional vibration mode of a piezoelectric ceramic substrate is used in fabricating the ultra-small size resonators and filters. In general, the three side ratios of the substrate effect the resonant characteristics of the resonator using its length extensional vibration. In this paper, their relationships are studied. We know that changing the ratio of its length to its width makes possible to change the resonant frequency of the width vibration without degrading the length extensional vibration.

  • PDF

Generating Characteristics of a Cantilever Type Piezoelectric Generator for Changeable Frequency (주파수 가변용 외팔보형 압전발전기의 발전특성)

  • Jeong, Seong-Su;Park, Choong-Hyo;Kang, Shin-Chul;Kim, Jong-Wook;Lim, Jung-Hoon;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.865-869
    • /
    • 2011
  • A cantilever-type piezoelectric generator has advantages of simple structure, ease of fabrication and large displacement by transverse vibration of a beam. It is easy to control the natural frequency, and also possible to increase the output power by changing the length, width, and thickness of the generator. In particular, the length increases, the natural frequency sharply decreases, and vice versa. Hence, the natural frequency can widely be controlled by using change in the length of elastic body. In this paper, the generator was designed and fabricated to change natural frequency using the slides of the case. In addition, the generating characteristics were confirmed through finite element analyses and vibration experiment. As a result, the maximum output characteristics could be generated due to resonance phenomenon although any frequency of external force was applied.

Effect of Channel Length Variation on Memory Window Characteristics of single-gated feedback field-effect transistors (채널 길이의 변화에 따른 단일 게이트 피드백 전계효과 트랜지스터의 메모리 윈도우 특성)

  • Cho, Jinsun;Kim, Minsuk;Woo, Sola;Kang, Hyungu;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.284-287
    • /
    • 2017
  • In this study, we examined the simulated electrical characteristics of single-gated feedback field effect transistors (FBFETs) and the influence of channel length variation of the memory window characteristics through the 3D device simulation. The simulations were carried out for various channel lengths from 50 nm to 100 nm. The FBFETs exhibited zero SS(< 1 mV/dec) and a current $I_{on}/I_{off}$ ratio${\sim}1.27{\times}10^{10}$. In addition, the memory windows were 0.31 V for 50 nm-channel-length devices while no memory windows were observed for 100 nm-channel-length devices.

Subthreshold Swing Model Using Scale Length for Symmetric Junctionless Double Gate MOSFET (대칭형 무접합 이중게이트 MOSFET에서 스케일 길이를 이용한 문턱전압 이하 스윙 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.142-147
    • /
    • 2021
  • We present a subthreshold swing model for a symmetric junctionless double gate MOSFET. The scale length λ1 required to obtain the potential distribution using the Poisson's equation is a criterion for analyzing the short channel effect by an analytical model. In general, if the channel length Lg satisfies Lg > 1.5λ1, it is known that the analytical model can be sufficiently used to analyze short channel effects. The scale length varies depending on the channel and oxide thickness as well as the dielectric constant of the channel and the oxide film. In this paper, we obtain the scale length for a constant permittivity (silicon and silicon dioxide), and derive the relationship between the scale length and the channel length satisfying the error range within 5%, compared with a numerical method. As a result, when the thickness of the oxide film is reduced to 1 nm, even in the case of Lg < λ1, the analytical subthreshold swing model proposed in this paper is observed to satisfy the error range of 5%. However, if the oxide thickness is increased to 3 nm and the channel thickness decreased to 6 nm, the analytical model can be used only for the channel length of Lg > 1.8λ1.

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

Special Structural Dependence Of Directional Coupler Characteristics (방향성 결합기의 응용 구조 및 특성 연구)

  • 최철현;홍정무;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.344-347
    • /
    • 2000
  • We analyze the variation of coupling length as a function of the waveguide width for a directional coupler. It is interesting that the coupling length is not monotonic function of waveguide width for a given distance between the centers. The waveguide width for a maximum coupling length can be utilized for the optimum design of a directional coupler.

  • PDF

GOLDD 구조를 갖는 LTPS TFT 소자의 전기적 특성 비교분석

  • Kim, Min-Gyu;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.40-40
    • /
    • 2009
  • The electrical characteristic of the conventional self-aligned polycrystalline silicon (poly-Si) TFTs are known to present several undesired effects such as large leakage current, kink effect and hot-carrier effects. In this paper, LTPS TFTs with different GOLDD length were fabricated and investigated the effect of the GOLDD. GOLDD length of 1, 1.5 and $2{\mu}m$ were used, while the thickness of the gate dielectrics($SiN_x/SiO_2$) was fixed at 65nm(40nm/25nm). The electrical characteristics show that the kink effect is reduced at the LTPS TFTs, and degradation from the hot-carrier effect was also decreased by increasing GOLDD length.

  • PDF

A Study on the Ballast Design of a Inductively Coupled Plasma Light Source based on Oscillation Theory (발진 이론에 근거한 유도결합형 방전광원의 안정기 설계에 관한 연구)

  • Kim, Cherl-Jin;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1110-1115
    • /
    • 2009
  • We studied on the design of electrical parameters for ICP(Inductively Coupled Plasma) light sources which can be effective to improve the electrical power efficiency of it. These parameters were derivated from Barkhausen theory about the oscillating condition of a ballaster. The relationships of $f-I_p$ and f-n were calculated theoretically and then these relationships were compared with the measured results about $I_p$ and power depending to a discharge length(l) of ICP light source. Finally, we can see that a specific range of induced current depending to a discharge length would be necessary to minimize the change of magnetization inductance and driving frequency at driving.

The Study on the Optimal Transmission Efficiency Characteristics of Pulse Energy Using Magnetic Pulse Compressors (가포화 자기스위치 MPC를 적용한 저온 플라즈마의 펄스에너지 전송효율 특성)

  • 이유수;정종한;정현주;김문환;김희제
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.383-387
    • /
    • 2003
  • In this paper, we have studied about optimal transmission efficiency characteristics of pulse energy in a coal plant for removing environmental polluted gas. The electrical efficiency of pulse power systems depends on impedance of the reactor. To obtain high efficiency, we used MPC(Magnetic pulse compressor) as the power switch and tested their characteristics as electrode length of the reactor and charging voltage of capacitor, As results, we obtained a compressed pulse such as pulse voltage of 10㎸, rising time 200ns and pulse width of 500ns. With increasing electrode length, the load impedance was decreased but the electrical efficiency was increased.