• Title/Summary/Keyword: Electrical impedance analysis

Search Result 657, Processing Time 0.027 seconds

Analysis of loop impedance characteristic based on korea internal electrical environment (국내환경을 고려한 loop impedance 특성 분석)

  • Jung, Jin-Soo;Han, Woon-Ki;Kim, O-Huan;Ahn, Jae-Min;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2174_2175
    • /
    • 2009
  • This Paper present about loop impedance characteristic based on korea internal electrical environment. Analysis parameters were touch voltage, electrical shock current and human body resistance. Result, For protect of electrical shock must measuring of loop impedance. And current capacity & loop impedance are must important parameters.

  • PDF

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Stability Analysis Using G-Parameters of Converters Constituting DC Microgrid and Stability Enhancement Through Virtual Impedance (G-parameter를 이용한 직류 마이크로그리드의 컨버터 상호 안정도 분석 및 가상 임피던스를 이용한 안정도 향상)

  • Lee, Jae-Suk;Lee, Gi-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.321-327
    • /
    • 2018
  • DC microgrid system composed of multiple converters has a tendency to make the system unstable due to the interaction of converters. To solve this problem, in this paper, the interaction between cascaded converters with LC input filter is analyzed with impedance modeling using g-parameter. The input impedance and the output impedance of the system can be obtained through this technique. The stability of the system can be determined by applying Middlebrook's stability criterion to the impedance. Virtual impedance is added to the controller to enhance stability. The validity of the analysis is verified by the result of several simulations and experiments.

A Study on the Measurement and Determination of External Loop Impedance on TN-C-S System (TN-C-S 접지계통에서 외부 루프 임피던스의 실측 및 기준값 설정에 관한 연구)

  • Yi, Geon-Ho;Jung, Jin-Soo;Moon, Hyun-Wook;Kim, Sun-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1163-1168
    • /
    • 2013
  • The maximum allowable value of loop impedance($Z_s$) to secure the operation of overcurrent protective devices and the safety for indirect contact is a very important in TN-C-S system. The loop impedance is divided into inner loop impedance which consumer can adjust and external loop impedance($Z_e$) which only electric operator can adjust. Thus, an external loop impedance which limits to less than a certain value is a very important factor for human body protection against electric shock in TN-C-S system. The concept of loop impedance($Z_s$) is recently introduced to the domestic, the study about external loop impedance is yet insufficient. However, the study about the reference impedance as specified by the IEC 60725 standard to improve the quality and reliability of the power supply is being made. In this paper, reference value of external loop impedance($Z_e$) to meet domestic environment will be proposed by the nationwide measurement and statistical analysis.

Detection Algorithm and Characteristics on DC Residual Current based on Analysis of IEC60479 Impedance Model for Human Body (IEC60479 인체 임피던스 모델에 근거한 직류누설전류의 특성 및 검출 알고리즘)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.305-312
    • /
    • 2018
  • DC distribution systems has recently taken the spotlight. Concerns over human safety and stability facility are raised in DC distribution systems. Std. IEC 60479 provides basic guidance on "the effects of shock current on human beings and livestock" for use in the establishment of electrical safety requirements and suggests an electrical impedance of the human body. This study analyzes impedance spectrums based on the electrical equivalent impedance circuit for the human body; human body impedances measured by experiments are analyzed below the fundamental frequency (60 Hz). The analysis shows that the equivalent impedance circuit for the human body should be modified at least in low-frequency range below the fundamental frequency (60 Hz). The DC residual current detection method that can classify electric shock accidents of humans and electric leakages of facilities is proposed by applying the analysis result. The detection method is verified by experiments on livestock.

On DC-Side Impedance Frequency Characteristics Analysis and DC Voltage Ripple Prediction under Unbalanced Conditions for MMC-HVDC System Based on Maximum Modulation Index

  • Liu, Yiqi;Chen, Qichao;Li, Ningning;Xie, Bing;Wang, Jianze;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.319-328
    • /
    • 2016
  • In this study, we first briefly introduce the effect of circulating current control on the modulation signal of a modular multilevel converter (MMC). The maximum modulation index is also theoretically derived. According to the optimal modulation index analysis and the model in the continuous domain, different DC-side output impedance equivalent models of MMC with/without compensating component are derived. The DC-side impedance of MMC inverter station can be regarded as a series xR + yL + zC branch in both cases. The compensating component of the maximum modulation index is also related to the DC equivalent impedance with circulating current control. The frequency characteristic of impedance for MMC, which is observed from its DC side, is analyzed. Finally, this study investigates the prediction of the DC voltage ripple transfer between two-terminal MMC high-voltage direct current systems under unbalanced conditions. The rationality and accuracy of the impedance model are verified through MATLAB/Simulink simulations and experimental results.

Stability Analysis of Grid-Connected Inverters with an LCL Filter Considering Grid Impedance

  • Li, Xiao-Qiang;Wu, Xiao-Jie;Geng, Yi-Wen;Zhang, Qi
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.896-908
    • /
    • 2013
  • Under high grid impedance conditions, it is difficult to guarantee the stability of grid-connected inverters with an LCL filter designed based on ideal grid conditions. In this paper, the theoretical basis for output impedance calculation is introduced. Based on the small-signal model, the d-d channel closed-loop output impedance models adopting the converter-side current control method and the grid-side current control method are derived, respectively. Specifically, this paper shows how to simplify the stability analysis which is usually complemented based on the generalized Nyquist stability criterion (GNC). The stability of each current-controlled grid-connected system is analyzed via the proposed simplified method. Moreover, the influence of the LCL parameters on the stability margin of grid-connected inverter controlled with converter-side current is studied. It is shown that the stability of grid-connected systems is fully determined by the d-d channel output admittance of the grid-connected inverter and the inductive component of the grid impedance. Experimental results validate the proposed theoretical stability analysis.

Analysis of the Electrical Properties of Solar Cell According to Variation of the Frequency (주파수 변화에 따른 태양전지 전기적 특성 분석)

  • Kim, Seong-Geol;Hong, Chang-Woo;Lee, Kyung-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.372-376
    • /
    • 2012
  • This study focused on the performance characteristics of solar cell using the impedance technique. We measured an impedance according to frequency from 1 Hz until 1 MHz. It could know that the impedance was decreased according to the frequency increases in solar cell. The impedance of single crystal solar cell was 0.61 ${\Omega}$ at 1 Hz, and kept almost settled value to $1{\times}10^2$ Hz. However, the impedance of polycrystal solar cell was $7{\times}10^3{\Omega}$ at 1 Hz.

Loop Impedance 측정을 통한 접지계통 비교분석

  • Jung, Jin-Soo;Han, Woon-Ki;Kim, O-Huan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.211-212
    • /
    • 2009
  • This Paper present about loop impedance measuring method by a comparison & analysis of the earthing systems in IEC60364. And comparing analysis about only considering a resistance and considering resistance & inductance. Result, For measuring of loop impedance than must measured resistance and reactance. And TT earthing system was lower fault current then TN systems, but an electric shock was higher then TN systems.

  • PDF

A Study on the Impact of the Impedance Change of 345[kV] Power Transformers on Overall System Performance (345[kV] 전력용 변압기 %임피던스 변화에 따른 계통영향 분석)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Song, Ji-Young;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.140-149
    • /
    • 2011
  • This paper deals with the impact analysis of the impedance change of 345/154[kV] power transformers on the KEPCO system's overall performance. Through the steady-state and dynamic analysis of power system, the maximum available impedance of power transformers were determined. Checking violation of short-circuit current ratings and transformer overload, parallel operation of power transformers, calculation of voltage variation ratio according to the impedance changes of power transformers are included in the steady-state analysis. In addition, transient and voltage stability analysis are also performed in the study. Available magnitudes to be able to change the impedance of the transformers in KEPCO system are finally determined in the paper.