• Title/Summary/Keyword: Electrical conductance

Search Result 299, Processing Time 0.027 seconds

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.

Development of the Low Cost Assembled Separator (저가형 조립 분리판의 개발)

  • Hwang, Yong-Sheen;Lee, Ju-Hyung;Ji, Sang-Hun;Park, Jun-Ho;Lee, Dae-Young;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.247-250
    • /
    • 2009
  • This study considers the feasibility of using the low cost assembled separator. The graphite plate has been widely used as the separator in the field of PEMFCs(Polymer electrolyte membrane fuel cell) industry because of its excellent material properties such as good corrosion resistance, good electrical conductance and so on. However, there are some problems for the commercialization due to its poor cost effectiveness for the large volume manufacturing and lack of mechanical strength. From this respect, this study has focused on the manufacturing technology in order to reduce the price for the commercialization of separator. This study also shows that the assembled separator of the suggested structure, which is composed of grafoil and PC(PolyCarbonate) materials, could be manufactured at low cost enough for the mass production. The flow fields produced by cutting foils and the base plates of the separators were simply made by mechanical work.

  • PDF

The Evaluation of Reliability of Chloride Ion Penetration the Test of Concrete due to the Population Mean in One Group (단일 집단의 모평균 검정에 의한 콘크리트의 염소이온 투과시험의 신뢰성 평가)

  • Min, Jeong-Wook;Park, Seung-Bum;Lee, Joon;Lee, Byeong-Jai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.553-556
    • /
    • 2008
  • We have studied about chloride penetration test by electrical conductance to 10 specimens made from same test batch. The coefficient of variation of total passed charge(Colombs) was about 24% in same specimens, and we draw a conclusion this method has a low reliability. Owing to complicated reaction ; heterogeneous material, mixing error and error of testing method, then we must consider the scope of the error which is introduced. Specially when you trying to get one test result against one spcimen, you can commit a big error, therefore we recommend that you use mean value against 3 specimens at least.

  • PDF

The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure (스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구)

  • Lee, Hong Woo;Yang, Bong Seob;Oh, Seungha;Kim, Yoon Jang;Kim, Hyeong Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

Temperature Dependence of Nanoscale Friction and Conductivity on Vanadium Dioxide Thin Film During Metal-Insulator Transition

  • Kim, Jong Hun;Fu, Deyi;Kwon, Sangku;Wu, Junqiao;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.143.2-143.2
    • /
    • 2013
  • Nanomechanical and electrical properties of vanadium dioxide (VO2) thin films across thermal-driven phase transition are investigated with ultra-high vacuum atomic force microscopy. VO2 thin films have been deposited on the n-type heavily doped silicon wafer by pulsed laser deposition. X-ray diffraction reveals that it is textured polycrystalline with preferential orientation of (100) and (120) planes in monoclinic phase. As the temperature increases, the friction decreased at the temperature below the transition temperature, and then the friction increased as increasing temperature above the transition temperature. We attribute this observation to the combined effect of the thermal lubricity and electronic contribution in friction. Furthermore, the dependence of nanoscale conductance on the local pressure was indicated at the various temperatures, and the result was discussed in the view of pressure-induced metal-insulator transition.

  • PDF

Altered Translational Control of Fragile X Mental Retardation Protein on Myelin Proteins in Neuropsychiatric Disorders

  • Jeon, Se Jin;Ryu, Jong Hoon;Bahn, Geon Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2017
  • Myelin is a specialized structure of the nervous system that both enhances electrical conductance and insulates neurons from external risk factors. In the central nervous system, polarized oligodendrocytes form myelin by wrapping processes in a spiral pattern around neuronal axons through myelin-related gene regulation. Since these events occur at a distance from the cell body, post-transcriptional control of gene expression has strategic advantage to fine-tune the overall regulation of protein contents in situ. Therefore, many research interests have been focused to identify RNA binding proteins and their regulatory mechanism in myelinating compartments. Fragile X mental retardation protein (FMRP) is one such RNA binding protein, regulating its target expression by translational control. Although the majority of works on FMRP have been performed in neurons, it is also found in the developing or mature glial cells including oligodendrocytes, where its function is not well understood. Here, we will review evidences suggesting abnormal translational regulation of myelin proteins with accompanying white matter problem and neurological deficits in fragile X syndrome, which can have wider mechanistic and pathological implication in many other neurological and psychiatric disorders.

Neural PID Based MPPT Algorithm for Photovoltaic Generator System (태양광 발전시스템을 위한 신경회로망 PID 기반 MPPT 알고리즘)

  • Park, Ji-Ho;Cho, Hyun-Cheol;Kim, Dong-Wan
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.14-22
    • /
    • 2012
  • Performance of photovoltaic (PV) generator systems relies on its operating conditions. Maximum power extracted from PV generators depends strongly on solar irradiation, load impedance, and ambient temperature. A most maximum power point tracking (MPPT) algorithm is based on a perturb and observe method and an incremental conductance method. It is well known the latter is better in terms of dynamics and tracking characteristics under condition of rapidly changing solar irradiation. However, in case of digital implementation, the latter has some error for determining a maximum power point. This paper presents a PID based MPPT algorithm for such PV systems. We use neural network technique for determining PID parameters by online learning approach. And we construct a boost converter to regulate the output voltage from PV generator system. Computer simulation is carried out to evaluate the proposed MPPT method and we accomplish comparative study with a perturb and observe based MPPT method to prove its superiority.

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device (실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.811-816
    • /
    • 2019
  • The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors (덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서)

  • Lee, Jun Min;Ju, Seonghwa;Joe, Jin Hyoun;Kim, Sung-Jin;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.

Non-adrenergic and Non-cholinergic Relaxation Mediated by Nitric Oxide in the Rabbit Gastric Fundus (가토 위저에서 Nitric oxide에 의해 매개되는 비-아드레날린 비-콜린성 이완반응)

  • Hong, Sung-Cheul;Choi, Ji-Eun;Han, Suk-Kyu;Kim, Young-Mi;Kim, Nam-Deuk;Park, Mi-Sun;Hong, Eun-Ju;Kim, Jin-Bo
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.149-157
    • /
    • 1994
  • The role of nitric oxide(NO) as neurotransmitter in non-adrenergic non-cholinergic (NANC) relaxation induced by electrical stimulation has been studied in circular muscle strips of the rabbit gastric fundus. In the presence of atropine and guanethidine, low frequency$(1{\sim}20\;Hz)$ and short trains (5s) of electrical stimulation induced the frequency-dependent relaxations which were not affected by adrenergic and cholinergic blockage, but abolished by tetrodotoxin, a nerve conductance blocker. L-NNA, a stereospecific inhibitor of NO biosynthesis, inhibited the relaxations induced by electrical stimulation but not affected the relaxation to exogenous NO. The effect of L-NNA was prevented by L-arginine, the precursor of the NO biosynthesis, but not by its enantiomer, D-arginine. Exogenous administration of NO$(10{\sim}100\;{\mu}M)$ caused the concentration-dependent relaxation which showed a similarity to those obtained with electrical stimulation. Hemoglobin, a NO scavenger, abolished the NO-induced relaxations and also markedly inhibited those evoked by electrical stimulation. Application of adenosine triphosphate$(1{\sim}10\;{\mu}M)$ induced concentration-independent contractions, but in high dose caused temporary contraction followed by relaxation which was not affected by L-NNA. Exogenous vasoactive intestinal polypeptide$(10{\sim}100\;nM)$ induced the concentration-dependent relaxation, while its effects were slower in onset and more persistent than those induced by short trains and low frequencies of electrical stimulation. Based on above results, it is suggested that NO is the principal neurotransmitter of NANC nerve at relaxation induced by short trains and low frequencies of electrical stimulation in the rabbit gastric fundus.

  • PDF