• 제목/요약/키워드: Electrical characterization

검색결과 1,428건 처리시간 0.025초

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

Pseudo MOSFET을 이용한 Nano SOI 웨이퍼의 전기적 특성분석 (Electrical Characterization of Nano SOI Wafer by Pseudo MOSFET)

  • 배영호;김병길;권경욱
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1075-1079
    • /
    • 2005
  • The Pseudo MOSFET measurements technique has been used for the electrical characterization of the nano SOI wafer. Silicon islands for the Pseudo MOSFET measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo MOSFET were not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device were dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100 nm SOI was obtained by thinning the silicon film of standard thick SOI wafer. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching Process dependency is greater in the thinner SOI wafer.

The Electrical Characterization of Magnetic Tunneling Junction Cells Using Conductive Atomic Force Microscopy with an External Magnetic Field Generator

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.271-274
    • /
    • 2010
  • We examined the tunneling current behaviors of magnetic tunneling junction (MTJ) cells utilizing conductive atomic force microscopy (AFM) interfaced with an external magnetic field generator. By introducing current through coils, a magnetic field was generated and then controlled by a current feedback circuit. This enabled the characterization of the tunneling current under various magnetic fields. The current-voltage (I-V) property was measured using a contact mode AFM with a metal coated conducting cantilever at a specific magnetic field intensity. The obtained magnetoresistance (MR) ratios of the MTJ cells were about 21% with no variation seen from the different sized MTJ cells; the value of resistance $\times$ area (RA) were 8.5 K-12.5 K $({\Omega}{\mu}m^2)$. Since scanning probe microscopy (SPM) performs an I-V behavior analysis of ultra small size without an extra electrode, we believe that this novel characterization method utilizing an SPM will give a great benefit in characterizing MTJ cells. This novel method gives us the possibility to measure the electrical properties of ultra small MTJ cells, namely below $0.1\;{\mu}m\;{\times}\;0.1\;{\mu}m$.

과전압 보호용 황동전극 기체방전관의 절연파괴 특성 (The Electrical Breakdown Characterization of Gas Discharge Tube using Brass Electrode for Surge Protector)

  • 김민일;정의경;이세현;이영석
    • 공업화학
    • /
    • 제21권2호
    • /
    • pp.205-210
    • /
    • 2010
  • 본 연구에서는 기체방전관의 과전압 보호 성능과 수명에 미치는 절연파괴 특성을 알아보기 위하여 황동전극을 이용하여 기체방전관을 제조하였다. 황동전극을 이용한 기체방전관의 절연파괴 특성은 인가전압의 기울기와 방전관 내부의 질소기체 압력을 통하여 알아보았다. 방전관 인가전압의 기울기가 증가할수록 절연파괴 전압과 방전 시 소비되는 에너지량이 크게 상승되었고, 절연파괴 시간은 감소되었다. 방전관 내부 질소기체의 압력이 감소할수록 절연파괴 전압과 절연파괴 소요시간, 방전 소비에너지량이 크게 감소되었다. 결과적으로, 방전관의 과전압 보호 성능 및 수명을 증진시키기 위해서는 절연파괴 전압과 절연파괴 소요시간, 방전 시 소비되는 에너지량이 감소되어야 함을 알 수 있었다. 한편, 방전관 내부 질소기체 압력이 방전관의 자체 수명 및 과전압 보호 성능에 영향을 미침을 알 수 있었다.

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

부분등가회로모델을 이용한 매립형 인덕터의 특성 연구 (Characterization of Embedded Inductors using Partial Element Equivalent Circuit Models)

  • 신동욱;오창훈;이규복;김종규;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.404-408
    • /
    • 2003
  • The characterization for several multi-layer embedded inductors with different structures was investigated. The optimized equivalent circuit models for several test structures were obtained from HSPICE. Building blocks are modeled using Partial element equivalent circuit method. The mean and the standard deviation of model parameters were extracted and predictive modeling was performed on different test structure. From this study, the characteristic of multi-layer inductors can be predicted.

Interfacial Electrical/Dielectric Characterization in Low Temperature Polycrystalline Si

  • Hwang, Jin-Ha
    • 마이크로전자및패키징학회지
    • /
    • 제12권1호
    • /
    • pp.77-85
    • /
    • 2005
  • Impedance spectroscopy was applied to low temperature polycrystalline Si in order to investigate the electrical/dielectric information in polycrystalline Si. By combined microstructure and impedance spectroscopy works, it was shown that the electrical information is sensitive to the corresponding microstructure, i.e., the grain size and distribution, judged from the capacitance vs. grain size relationship. At $360 mJ/cm^2$, the maximum in capacitance and the minimum in resistance correspond to the largest grain sizes of unimodal distribution in polycrystalline Si. The electrical/dielectric characterization is compared with Raman spectroscopic characterizations in terms of microstructure.

  • PDF

테라헤르츠 전자기 펄스를 이용한 이산화규소의 전기적 광학적 특성 (The Electrical and Optical Characteristics of Silica Sand by Terahertz Electromagnetic Pulses)

  • 전태인
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.202-206
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption, the index of refraction, and the real conductivity of silica sand are measured from 0.1[Thz] to 0.5[Thz] frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hall effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of he sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency. This is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF