Browse > Article

The Electrical Breakdown Characterization of Gas Discharge Tube using Brass Electrode for Surge Protector  

Kim, Min Il (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Jeong, Euigyung (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Lee, Sei-Hyun (Department of Electrical and Electronic Engineering, Korea Polytechnic IV College)
Lee, Young-Seak (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.2, 2010 , pp. 205-210 More about this Journal
Abstract
In this study, a brass electrode gas discharge tube (GDT) was prepared to investigate its discharge characterization, which affects surge protection efficiency and lifetime of GDT. Discharge characterization of GDT using a brass electrode was investigated by changing applied voltage gradient and nitrogen gas pressure inside the GDT. As applied voltage gradient in GDT increased, electrical breakdown voltage and threshold energy largely increased and electrical breakdown time delay decreased. It was found that electrical breakdown voltage, electrical breakdown time delay, and threshold energy were largely decreased with decreasing the nitrogen gas pressure in GDT. As a result, electrical breakdown voltage, electrical breakdown time delay, threshold energy needed to be decreased to increase surge protection efficiency and lifetime. It was also found that the nitrogen gas pressure of GDT influenced strongly the performances as well as life span of it.
Keywords
gas discharge tube; brass electrode; electrical breakdown; surge protection;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. H. Eom, S. C. Cho, T. H. Lee, and Y. C. Lee, Journal of KIIEE., 21, 46 (2007)
2 D. M. Lee, J. of Korean Institute of Fire Sci. & Eng., 23, 55 (2009)
3 R. B. Standler, Protection of Electronic Circuits from Overvoltages, 1, 90, Wiley, New York (1989)
4 J. G. Zola, IEEE Trans. Electromag. Compat., 50, 1022 (2008)   DOI   ScienceOn
5 이덕출, 황명환, 고전압 플라즈마 공학, 1, 23, 동아출판사, 서울 (1996)
6 R. K. Roy, S. Gupta, B. Deb, and A. K. Pal, Vacuum, 70, 543 (2003)   DOI   ScienceOn
7 N. Bellakhal, K. Draou, and J. L. Brisset, Mater. Chem. Phys., 73, 235 (2002)   DOI   ScienceOn
8 김종일, 고전압 방전 플라즈마, 1, 55, 인터비젼, 서울 (2003)
9 W. R. M. Zaki, A. H. Nawawi, and S. S. Ahmad, Energ. Convers. Manage., 51, 538 (2010)   DOI   ScienceOn
10 S. John, J. C. Hamann, S. S. Muknahallipatna, S. Legowski, J. F. Ackerman, and M. D. Argyle, Chem. Eng. Sci., 64, 4826 (2009)   DOI   ScienceOn
11 L. Lefevre, T. Belmonte, T. Czerwiec, A. Ricard, and H. Michel, Appl. Surf. Sci., 153, 85 (2000)   DOI   ScienceOn
12 J. J. Gooding, Electrochim. Acta, 50, 3049 (2005)   DOI   ScienceOn
13 R. Rosen, Appl. Phys. Let., 76, 1668 (2000)   DOI   ScienceOn
14 K. Wakai, Inter. Inst. Measur. Tech. Conf., 5, 181 (2009)
15 D. K. Kwak, J. microelectron. packaging soc., 13, 27 (2006)
16 J. E. Chaparro, W. Justis, H. G. Krompholz, L. L. Hatfield, and A. A. Neuber, IEEE T. Plasma Sci., 36, 2505 (2008)   DOI   ScienceOn
17 A. Mangiarotti, A. Gobbib, Nucl. Instrum. Meth. A, 482, 192 (2002)   DOI   ScienceOn
18 M. H. Hirsh and H. J. Oskam, Gaseous Electronics, 1, 58, Academic Press, New York (1978)
19 J. H. Choi, S. D. An, and B. H. Lee, Journal of KIIEE, 22, 128 (2008)
20 M. Tanaka, H. Terasaki, M. Ushio, and J. J. Lowke, Metall. Mater. Trans. A, 33A, 2002 (2001)