• Title/Summary/Keyword: Electrical Engineering Design

Search Result 7,363, Processing Time 0.042 seconds

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Variable Switching Duty Control of Switched Reluctance Motor using Low-Cost Analog Drive (저가형 아날로그 구동장치를 이용한 Switched Reluctance Motor의 스위칭 Duty 가변제어)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2021
  • For accurate speed and current control in industrial applications, SRM (Switched Reluctance Motor) is very important to synchronize the stator phase excitation and rotor position in the drive due to its nature. In general, position sensors such as encoder and resolver are used to generate rotational force by exciting the stator winding according to the rotor position and to control the motor by using speed and position information. However, for these sensors, 1) the cost of the sensors is quite large in terms of price, so the proportion of the motor system to the total system cost is high. 2) In terms of mechanical, position sensors such as encoders and resolvers are attached to the stator to increase the size and weight. In conclusion, in order to drive the SRM, control based on the rotor position information should be basically performed, and it is important to design the SRM driving system according to the environment in consideration of the application field. Therefore, in this paper, we intend to study the driving and control characteristics of SRM through variable switching duty control by designing a low-cost analog driving device, deviating from the general control system using the conventional encoder and resolver.

Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band (28 GHz 대역에서 동작하는 이중 선형편파 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose single and array antenna with dual linear polarization characteristics for 28 GHz band. The proposed antenna is designed two microstirp feeding structure and Taconic TLY-5 substrate, which is thickness 0.5 mm, and the dielectric constant is 2.2. The size of single patch antenna is 3.4 mm×3.4 mm, and total size of single antenna is 15.11 mm×15.11 mm. Also, the size of array antenna is 3.15 mm×3.15 mm, and total size of array antenna is 21.5 mm×13.97 mm. From the fabrication and measurement results, for 1×2 array antenna, in case of vertical polarization, cross polarization ratios are obtained from 14.23 dB to 20.79 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.31 dB to 22.74 dB for input port 1. in case of vertical polarization, cross polarization ratios are obtained from 15.75 dB to 25.88 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.70 dB to 22.82 dB for input port 2.

A Scalable Montgomery Modular Multiplier (확장 가능형 몽고메리 모듈러 곱셈기)

  • Choi, Jun-Baek;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.625-633
    • /
    • 2021
  • This paper describes a scalable architecture for flexible hardware implementation of Montgomery modular multiplication. Our scalable modular multiplier architecture, which is based on a one-dimensional array of processing elements (PEs), performs word parallel operation and allows us to adjust computational performance and hardware complexity depending on the number of PEs used, NPE. Based on the proposed architecture, we designed a scalable Montgomery modular multiplier (sMM) core supporting eight field sizes defined in SEC2. Synthesized with 180-nm CMOS cell library, our sMM core was implemented with 38,317 gate equivalents (GEs) and 139,390 GEs for NPE=1 and NPE=8, respectively. When operating with a 100 MHz clock, it was evaluated that 256-bit modular multiplications of 0.57 million times/sec for NPE=1 and 3.5 million times/sec for NPE=8 can be computed. Our sMM core has the advantage of enabling an optimized implementation by determining the number of PEs to be used in consideration of computational performance and hardware resources required in application fields, and it can be used as an IP (intellectual property) in scalable hardware design of elliptic curve cryptography (ECC).

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea (이천 및 포천지역 온천수의 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Koh, Yung-Kwon;Shin, Seon-Ho;Nagao, Keisuke;Kim, Kyu-Han;Kim, Gun-Young
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.529-541
    • /
    • 2009
  • Hydrochemical, stable isotopic ($\delta^{18}O$ and dD) and noble gas isotopic analyses of seven hot spring water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the hot spring waters. The hot spring waters show low temperature type ranging from 21.5 to $31.4^{\circ}C$ and the pH value between 6.69 and 9.21. Electrical conductivity of hot spring waters has the range from 310 to $735\;{\mu}S/cm$. Whereas the hot spring water in the Icheon area shows the geochemical characteristics of neutral pH, the $Ca-HCO_3$(or $Ca(Na)-HCO_3$) chemical type and a high uranium content, the hot spring water in the Pocheon area shows the characteristics of alkaline pH, the $Na-HCO_3$ chemical type and a high fluorine content. These characteristics indicate that the hot spring water in the Icheon area is under the early stage in the geochemical evolution, and that the hot spring water in the Pocheon area has been geochemically evolved. The $\delta^{18}O$ and ${\delta}D$ values of hot spring waters show the range of $-10.1{\sim}-8.69%o$ and from $-72.2{\sim}-60.8%o$, respectively, and these values supply the information of the recharge area of hot spring waters. The $^3He/^4He$ ratios of the hot spring waters range from $0.09\;{\times}\;10^{-6}$ to $0.65\;{\times}\;10^{-6}$ which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon hot spring water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon hot spring water shows a dominant crustal source. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.