DOI QR코드

DOI QR Code

Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band

28 GHz 대역에서 동작하는 이중 선형편파 안테나의 설계 및 제작

  • Yoon, Joong-Han (Dept. of Electrical and Electronic Engineering, Silla University)
  • 윤중한 (신라대학교 전기전자공학과)
  • Received : 2021.11.15
  • Accepted : 2022.02.17
  • Published : 2022.02.28

Abstract

In this paper, we propose single and array antenna with dual linear polarization characteristics for 28 GHz band. The proposed antenna is designed two microstirp feeding structure and Taconic TLY-5 substrate, which is thickness 0.5 mm, and the dielectric constant is 2.2. The size of single patch antenna is 3.4 mm×3.4 mm, and total size of single antenna is 15.11 mm×15.11 mm. Also, the size of array antenna is 3.15 mm×3.15 mm, and total size of array antenna is 21.5 mm×13.97 mm. From the fabrication and measurement results, for 1×2 array antenna, in case of vertical polarization, cross polarization ratios are obtained from 14.23 dB to 20.79 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.31 dB to 22.74 dB for input port 1. in case of vertical polarization, cross polarization ratios are obtained from 15.75 dB to 25.88 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.70 dB to 22.82 dB for input port 2.

본 논문에서는 28 GHz 대역 특성을 갖는 단일 및 배열안테나를 제안하였다. 제안된 안테나는 두 개의 마이크로스트립 선로 급전구조를 갖도록 하였으며 유전율는 2.2이고 두께가 0.5 mm인 Taconic TLY-5 기판위에 설계되었다. 제안된 단일 안테나의 크기는 3.4 mm×3.4 mm이며 전체 기판의 크기는 15.11 mm×15.11 mm이며 1×2 배열안테나의 경우 각각 3.15 mm×3.15 mm이며 전체 기판의 크기는 21.50 mm×13.97 mm이다. 제작 및 측정결과, 1×2 배열안테나의 경우, 입력포트가 1일 때 수직편파의 경우, 편파분리도는 14.23 dB에서 20.79 dB 사이 값을 얻었으며 수평편파의 경우, 편파분리도는 14.31 dB에서 22.74 dB 사이 값을 얻었다. 입력포트가 2일 때 수직편파의 경우, 편파분리도는 15.75 dB에서 25.88 dB 사이 값을 얻었으며 수평편파의 경우, 편파분리도는 14.70 dB에서 22.82 dB 사이 값을 얻었다.

Keywords

Acknowledgement

본문는 산업통상자원부의 재원으로 한국산업기술관리평가원(KEIT)의 지원을 받아 수행된 연구결과 중 일부임. (소재부품패키지형기술개발사업-초고주파 소재를 이용한 중계기/스몰셀 안테나 모듈개발, 과제번호 : 20010608)

References

  1. Y. Chen, "5G future mobile communication," The Proc. of the Korea Electromagnetic Engineering Society, vol. 25, no. 4, Apr. 2014, pp. 3-12.
  2. G. Kang, H. Lee, S. Park, W. Kang, and B. Kwon, "Current trends of 5G wireless technology," The Telecommunications Technology Association Journal, vol. 163, Jan. 2016, pp. 51-57.
  3. H. Kim, "Understanding of 5G service implementation technology," The Korean Institute of Broadcast and Media Engineers, vol. 24, no. 3, July 2017, pp. 10-22.
  4. 5G Americas white paper, "Advanced antenna systems for 5G," Technical report, Aug. 2019.
  5. S. Lee, Y. Yun, J. Park, M. Chu, Y. Kim, J. Choi, and W. Hong, "Current trends of 5G antenna," J. of Korea Institute of Electromagnetic Engineering and Science Mag., vol. 29, no. 2, Mar. 2018, pp. 3-15.
  6. J. Jung and S. Park, "A study on adaptive pattern null synthesis for active phased array antenna," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 3, June 2021, pp. 407-416. https://doi.org/10.13067/JKIECS.2021.16.3.407
  7. I. Yoon, X. Yan, S. Kim, Y. Jo, and H. Park, "A study on the improvement of MIMO antenna isolation for mobile applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 9, Sept. 2015, pp. 987-992. https://doi.org/10.13067/JKIECS.2015.10.9.987
  8. Y. Kim, "Traffic Transmission performance of railway communication network based on 5G," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 6, Dec. 2021, pp. 1069-1074.
  9. D. Kim and S. Oh, "Verification on the Reduction Technique of Measurement Time of Total Radiated Power (TRP) by Using Effective Isotropic Radiated Power (EIRP) in 5G Frequency Band," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 5, Oct. 2020, pp. 835-840. https://doi.org/10.13067/JKIECS.2020.15.5.835
  10. S. Naqvi, N. Hussain, A. Iqbal, M. Rahman, M. Forsat, S. Mirjava, and Y. Amin, "Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals," Sensor, vol. 20, no. 14, July 2020, pp. 1-20. https://doi.org/10.1109/JSEN.2019.2959158
  11. S. Hadi and Z. Guifu, "Low cross polarization high isolation microstrip patch antenna array for multi-mission application," IEEE Access, vol. 7, 2019, pp. 5026-5033. https://doi.org/10.1109/ACCESS.2018.2889599
  12. S. Kim and J. Choi, "Array antenna with linear and circular polarization characteristics for 28GHz Band 5G mobile handset applications," J. of Electromagnetic Engineering and Science, vol. 31, no. 1, Jan. 2020, pp. 215-220.
  13. E. Lim and S. Pyo, "Orthogonal-polarized dual-band switchable microstrip antenna using PIN diodes loaded H-shape slot," J. of Korea Institute of Electromagnetic Engineering and Science, vol. 27, no. 3, Feb. 2016, pp. 156-162. https://doi.org/10.5515/KJKIEES.2016.27.2.156
  14. J. Lee, T. Oh, J. Ha, and Y. Lee, "Design of dual-polarization antenna with high cross-polarization discrimination," J. of the Korean Institute of Information, Electronics, Telecommunications and Technology Science, vol. 10, no. 3, Mar. 2017, pp. 199-205. https://doi.org/10.17661/jkiiect.2017.10.3.199
  15. J. Kim, H. Ryu, M. Chae, J. Kim, B. Park, and Y. Park, "Design and fabrication of a dual linear polarization sinuous antenna with improved cross polarization isolation," J. of Advanced Navigation Technology, vol. 22, no. 2, Apr. 2018, pp. 123-132. https://doi.org/10.12673/JANT.2018.22.2.123
  16. J. Kim and Y. Sung, "Dual-Band microstrip patch antenna with switchable orthogonal linear polarization," J. of Electromagnetic Engineering and Science, vol. 18, no. 4, Oct. 2018, pp. 215-220. https://doi.org/10.26866/jees.2018.18.4.215