• 제목/요약/키워드: Electrical Energy

검색결과 10,758건 처리시간 0.036초

Shore power to ships and offshore plants with flywheel energy storage system

  • Jeong, Hyun-Woo;Ha, Yun-Su;Kim, Yoon-Sik;Kim, Chul-Ho;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.771-777
    • /
    • 2013
  • This paper describes a study of major shipyard's electrical network and simulation of applying flywheel energy storage system on the electrical network at shipyard for shore-power to ships and offshore plants in order to save fuel consumption on engines, mitigate voltage sags, and prevent blackout due to pulsed load and fault, resulting in reduction of air emission into atmosphere. The proposed energy recycling method with FESS (Flywheel Energy Storage System) can be applied for electrical power system design of heavy cranes at shipyards.

독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계 (Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

대기전력 측정을 통한 절전 잠재량 예측 (Potential Electrical Energy Saving by Stand-by Power Measurement)

  • 최재원;장우진
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1999년도 학술대회논문집-국제 전기방전 및 플라즈마 심포지엄 Proceedings of 1999 KIIEE Annual Conference-International Symposium of Electrical Discharge and Plasma
    • /
    • pp.253-255
    • /
    • 1999
  • We measured stand-by power of electrical machinery and appliance which are used at office and house. And we estimated potential electrical energy saving through stand-by power and the expecting number of supplied apparatus. As a result, We can reduce electrical energy by minimizing a stand-by power consumption up to three billion kWh which are equal to about 1/3 of an atomic power plant's generating power of 1 year.

  • PDF

경제성 평가를 통한 태양광발전시스템 연계형 에너지저장장치 용량 선정에 관한 연구 (A Study on the Energy Saving Capacity of Solar Power Generation System using Economic Evaluation)

  • 이여진;김성열;한세경
    • 전기학회논문지P
    • /
    • 제67권1호
    • /
    • pp.21-26
    • /
    • 2018
  • Due to the international environmental regulations and changes in policies, the demand for generators using the renewable energy is increasing. However, renewable energy generators with intermittent output characteristics such as solar and wind power generators, need the buffer facilities such as ESS during system operations. However, because of low price competitiveness in energy storage system, it is difficult to operate the renewable energy generator with ESS. Therefore, the government has recently proposed a policy to compensate the REC for renewable energy system with ESS. For all this, since the initial cost of the ESS is high, it is the most important to calculate and operate the optimal capacity of the ESS through an economic analysis. In this paper, we proposed the method of calculation the optimal capacity of ESS and analyzed economic feasibility of renewable energy system using the ESS according to depreciation in ESS price.

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

중소형 태양광/풍력 복합발전시스템의 보조 전력보상장치에 관한 연구 (The Auxiliary Power Compensation apparatus for small scale Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;윤형상;임중열;강병복;이정일;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.109-112
    • /
    • 2004
  • Photovoltaic energy and wind energy are very in constant depending on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the solar and the wind generation system have many problems(energy conversion, energy storage, load control etc.) comparing with a conventional power plant. So, in order to solve these existing problems, hybrid generation system of photovoltaic(500W) and wind power(400W), which combines wind power energy and solar energy to have effect of supporting each other, was suggested. But hybrid generation system cannot always generate stable output with weather condition, the auxiliary power compensation apparatus that uses elastic energy of spiral spring to hybrid generation system was also added for the present study. And it may confirm that power was continuously provided to load by storing energy obtained from generating rotary energy of spiral spring generates in small scale generator.

  • PDF

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성 (Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion)

  • 유지행;김영운;박건우;서두원;이시우;우상국
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

Status of the technology development of large scale HTS generators for wind turbine

  • Le, T.D.;Kim, J.H.;Kim, D.J.;Boo, C.J.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.18-24
    • /
    • 2015
  • Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.