Browse > Article
http://dx.doi.org/10.9714/psac.2015.17.2.018

Status of the technology development of large scale HTS generators for wind turbine  

Le, T.D. (Department of Electrical Engineering, Jeju National University)
Kim, J.H. (Department of Electrical Engineering, Jeju National University)
Kim, D.J. (Department of Electrical Engineering, Jeju National University)
Boo, C.J. (Department of Electrical Energy Engineering, Jeju International University)
Kim, H.M. (Department of Electrical Engineering, Jeju National University)
Publication Information
Progress in Superconductivity and Cryogenics / v.17, no.2, 2015 , pp. 18-24 More about this Journal
Abstract
Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.
Keywords
Wind energy; HTS generator's wind turbine; coated conductors; cryogenic technology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Manzano-Agugliaro, A. Alcayde, F. G. Montoya, A. Zapata-Sierra, and C. Gil, "Scientific production of renewable energies worldwide: A overview," Renew. Sust. Energy Rev., vol. 18, pp. 134-143, 2013.   DOI   ScienceOn
2 J. Terrapon-Pfaff, C. Dienst, J. Konig, and W. Ortiz, "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renew. Sust. Energy Rev., vol. 40, pp. 1-10, 2014.   DOI   ScienceOn
3 C. F. A. Rodrigues, M. A. P. Dinis, and M. J. L. Sousa, "Review of European energy policies regarding the recent "carbon capture, utilization and storage" technologies scenario and the role of coal seams," Environ. Earth Sci., (DOI: 10.1007/s12665-015-4275-0), 2015.   DOI
4 C. L. Benson and C. L. Magee, "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, vol. 68, pp. 745-751, 2014.   DOI   ScienceOn
5 Renewables global status report 2014, REN21, 2014.
6 Doubling the global share of renewable energy a roadmap to 2030, IRENA, 2013.
7 Y. A. Kaplan, "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renew. Sust. Energy Rev., vol. 43, pp. 562-568, 2015.   DOI   ScienceOn
8 R. Kenny, C. Law, and J. M. Pearce, "Towards real energy economics: energy policy driven by life-cycle carbon emission," Energy Policy, vol. 38, pp. 1969-1978, 2010.   DOI   ScienceOn
9 A. Evans, V. Strezov, and T. J. Evans, "Assessment of sustainability indicators for renewable energy technologies," Renew. Sust. Energy Rev., vol. 13, pp. 1082-1088, 2009.   DOI   ScienceOn
10 M. Jacobson and M. A. Delucchi, "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, vol. 39, no. 3, pp. 1154-1169, 2011.   DOI   ScienceOn
11 O. Keysan, "Future electrical generator technologies for offshore wind turbines," Eng. Technol. Ref., pp. 1-11, (DOI: 10.1049/etr.2014.0020), 2015.   DOI
12 World Energy Outlook, IEA, 2013.
13 G. M. J. Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy technologies," Renew. Sust. Energy Rev., vol. 11, pp. 1117-1145, 2007.   DOI   ScienceOn
14 C. L. Archer and M. Z. Jacobson, "Evaluation of global wind power," J. Geophys. Res., vol. 110, D12110, (DOI: 10.1029/2004JD005462), 2005.   DOI
15 J. Lloberas, A. Sumper, M. Sanmarti, and X. Granados, "A review of high temperature superconductors for offshore wind power synchronous generators," Renew. Sust. Energy Rev., vol. 38, pp. 404-414, 2014.   DOI   ScienceOn
16 New record in worldwide wind installation, WWEA, 2015.
17 A renewable energy roadmap 2030, IREA, 2014.
18 M. Caduff, M. A. J. Huijbregts, H. J. Althasus, A. Koehler, and S. Hellweg, "Wind power electricity: the bigger the turbine, the greener the electricity," Environ. Sci. Technol., vol. 46, pp. 4725-4733, 2012.   DOI
19 D. Zhou, Mitsuru, M. Miki, B. Felder, T. Ida, and M. Kitan, "An overview of rotating machine systems with high temperature bulk superconductors," Supercond. Sci. Technol. 25, p.103001, 2012.   DOI   ScienceOn
20 W. Tong, Wind Power Generation and Wind Turbine Design. Southampton, WIT Press, 2010.
21 J. Wang, R. Qu, Y. Liu, J. He, Z. Zhu, and H. Fang, "Comparison study of superconducting wind generators with HTS and LTS field windings," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201806, 2015.
22 V. Matias and R. H. Hammond, "HTS superconductor wire:$5/kAm by 2030," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_002.
23 S. H. Moon, "Recent progress of 2G superconducting wire in SuNAM," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_003.
24 H. J. Sung, G. H. Kim, K. M. Kim, S. J. Jung, M. Park, I. K. Yu, Y. G. Kim, H. G. Lee, and A. R. Kim, "Practical design of a 10 MW superconducting wind power generator considering weight issue," IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 5201805, 2013.   DOI   ScienceOn
25 http://www.3ghts.com/
26 T. D. Le, J. H. Kim, S. I. Park, D. H. Kang, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Thermal design of a cryogenics cooling system for a 10 MW-class high-temperature superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 3800305, 2015.
27 B. Chen, G. B. Gu, G. Q. Zhang, F. C. Song, and C. H. Zhao, "Analysis and design of cooling system in high temperature superconducting synchronous machines," IEEE Trans. Appl. Supercond., vol. 17, no. 2, p. 1557, 2007.   DOI   ScienceOn
28 J. A. Urbahn, R. A. Ackermann, X. Huang, E. T. Laskaris, K. Sivasubramaniam, and A. Steinbach, "The thermal performance of a 1.5 MVA HTS generator," AIP Conf. Proc. 710, p. 849, 2004.
29 G. Snitchler, B. Gamble, and S. S. Kalsi, "The performance of a 5 MW high temperature superconductor ship propulsion motor," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2206-2209, 2005.   DOI   ScienceOn
30 H. C. Jo et al., "Numerical analysis and design of damper layer for MW-Class HTS synchronous wind turbine," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 5200905, 2014.
31 Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues, 2nd ed. New York, NY, USA: Springer-Verlag, 2009, pp. 357-358.
32 S. Hahn et al., "No-insulation (NI) winding technique for premature-quench-free NbTi MRI magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4501004, 2012.   DOI   ScienceOn
33 S. Hahn et al., "No-insulation (NI) HTS inserts for 1 GHz LTS/HTS NMR magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4302405, 2012.   DOI   ScienceOn
34 S. Hahn, D. K. Park, J. Bascunan, and Y. Iwasa, "HTS pancake coils without turn-to-turn insulation," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1592-1595, 2011.   DOI   ScienceOn
35 Y. G. Kim et al., "Investigation of HTS racetrack coil without turn-to-turn insulation for superconducting rotating machines," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5200604, 2012.   DOI   ScienceOn
36 S. Choi et al., "A study on the no insulation winding method of the HTS coil," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4904004, 2012.   DOI   ScienceOn
37 S. W. Yoon et al., "The performance of the conduction cooled 2G HTS magnet wound without turn to turn insulation generating 4.1 T in 102 mm bore," Physica C, vol. 494, pp. 242-245, 2013.   DOI   ScienceOn
38 Y. H. Choi et al., "Partial insulation of GdBCO single pancake coils for protection-free HTS power applications," Supercond. Sci. Technol., vol. 24, p. 125013, 2011.   DOI   ScienceOn
39 K. Kim, B. S. Go, M. Park, and I. K. Yu, "Design and performance analysis of a NI-Type HTS field magnet for superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203704, 2015.
40 Y. Xu, N. Maki, and M. Izumi, "Operating temperature influence on performance of 10 MW wind turbine HTS generators," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5200605, 2015.
41 H. Karmaker, M. Ho, and D. Kulkarni, "Comparison between different design topologies for multi-megawatt direct drive wind generators using improved second generation high temperature superconductors," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201605, 2015.
42 Y. Terao, M. Sekino, and H. Ohsaki, "Electromagnetic design of 10 MW class fully superconducting wind turbine generators," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5201904, 2012.   DOI   ScienceOn
43 Y. Liang, M. D. Rotaru, and J. Sykulski, "Electromagnetic simulation of a fully superconducting 10-MW-class wind turbine generator," IEEE Trans. Appl. Supercond., vol. 23, no. 6, p. 5202805, 2013.   DOI
44 Y. Nyanteh, N. Schneider, D. Netter, B. Wei, and P. J. Masson, "Optimization of a 10 MW direct drive HTS generator for minimum levelized cost of energy," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203504, 2015.
45 J. H. Kim, S. I. Park, T. D. Le, and H. M. Kim, "3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power," Prog Supercond and Cryo, vol. 16, no. 2, pp. 47-53, 2014.   DOI   ScienceOn
46 J. H. Kim, S. I. park, T. D. Le, K. L. Kim, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Characteristics analysis of various structural shapes of superconducting field coils," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201105, 2015.