• Title/Summary/Keyword: Electrical Devices

Search Result 5,733, Processing Time 0.046 seconds

Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices (광 시냅스 및 뉴로모픽 소자 기술)

  • Song, Seungho;Kim, Jeehoon;Kim, Yong-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

Electrical Characteristics of Semiconductor DI Switching Devices (반도체(半導體) DI switching소자(素子)의 전기적(電氣的) 특성(特性))

  • Jeong, Se-Jin;Lim, Kyoung-Moon;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.110-114
    • /
    • 1990
  • Double Injection Switching Devices consist of $P^+$ and $n^+$ contact separated by a near intrinsic Semiconductor region containing deep trap. A V-Groove Double Injection Switching Devices were proposed for high voltage performance and Optical gating scheme. The experimental result to demonstrate the feasibility of these devices (Planar type, V-Groove type, Injection Gate mode, Optical Gate mode) for practical application are described.

  • PDF

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.84-87
    • /
    • 2011
  • We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

Trajectory of Resonant Displacement of Coupled Vibration Mode Piezoelectric Devices for AE Sensor Application (음향방출 센서 응용을 위한 결합진동 모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • In this study, coupled mode piezoelectric devices for AE sensor application with excellent displacement and piezoelectric characteristics were simulated using ATILA FEM program, and then fabricated. Displacements and electromechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor were obtained when the ratio of diameter/thickness was 1.0. The piezoelectric device of ${\Phi}/T$= 1.0 exhibited the optimum values of fr= 406 kHz, displacement= $6.11{\times}10^{-8}[m]$, $k_{eff}$= 0.648. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

A Study on Electrical Characteristics Improvement on Field Stop IGBT Using Trench Gate Structure (Trench Gate를 이용한 Field Stop IGBT의 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2012
  • The most recently IGBT (insulated gate bipolar mode transistor) devices are in the most current conduction capable devices and designed to the big switching power device. Use this number of the devices are need to high voltage and low on-state voltage drop. And then in this paper design of field stop IGBT is insert N buffer layer structure in NPT planar IGBT and optimization design of field stop IGBT and trench field stop IGBT, both devices have a comparative analysis and reflection of the electrical characteristics. As a simulation result, trench field stop IGBT is electrical characteristics better than field stop IGBT.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

Technical Trend of Fusion Semiconductor Devices Composed of Silicon and Compound Materials (실리콘-화합물 융합 반도체 소자 기술동향)

  • Lee, S.H.;Chang, S.J.;Lim, J.W.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.8-16
    • /
    • 2017
  • In this paper, we review studies attempting to triumph over the limitation of Si-based semiconductor technologies through a heterogeneous integration of high mobility compound semiconductors on a Si substrate, and the co-integration of electronic and/or optical devices. Many studies have been conducted on the heterogeneous integration of various materials to overcome the Si semiconductor performance and obtain multi-purpose functional devices. On the other hand, many research groups have invented device fusion technologies of electrical and optical devices on a Si substrate. They have co-integrated Si-based CMOS and InGaAs-based optical devices, and Ge-based electrical and optical devices. In addition, chip and wafer bonding techniques through TSV and TOV have been introduced for the co-integration of electrical and optical devices. Such intensive studies will continue to overcome the device-scaling limitation and short-channel effects of a MOS transistor that Si devices have faced using a heterogeneous integration of Si and a high mobility compound semiconductor on the same chip and/or wafer.

Electrical Effects in Organic Thin-Film Transistors Using Polymerized Gate Insulators by Vapor Deposition Polymerization (VDP)

  • Lee, Dong-Hyun;Pyo, Sang-Woo;Koo, Ja-Ryong;Kim, Jun-Ho;Shim, Jae-Hoon;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.661-664
    • /
    • 2004
  • In this paper, it was demonstrated that the organic thin film transistors with the organic gate insulators were fabricated by vapor deposition polymerization (VDP) processing. The configuration of OTFTs was a staggered-inverted top-contact structure and gate dielectric layer was deposited with 0.45 ${\mu}m$ thickness. In order to form polyimide as a gate insulator, VDP process was also introduced instead of spin-coating process. Polyimide film was respectively co-deposited with different materials. One was from a 4,4'-oxydiphthalic anhydride (ODPA) and 4, 4'-oxydianiline (ODA) and the other was from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and ODA. And it was also cured at 150 $^{\circ}C$ for 1 hour followed by 200 $^{\circ}C$ for 1 hour. Electrical characteristics of the organic thin-film transistors were detailed comparisons between the ODPA-ODA and the 6FDA-ODA which were used as gate insulator.

  • PDF

Modification of Dielectric Surface in Organic Thin-Film Transistor with Organic Molecule

  • Kim, Jong-Moo;Lee, Joo-Won;Kim, Young-Min;Park, Jung-Soo;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Oh, Myung-Hwan;Kim, Jong-Seung;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1030-1033
    • /
    • 2004
  • We herewith report for the effect of dielectric surface modification on the electrical characteristics of organic thin-film transistors (OTFTs). The kist-jm-1 as an organic molecule for the surface modification is deposited onto the surface of zirconium oxide ($ZrO_2$) gate dielectric layer. The OTFTs are elaborated on the flexible plastic substrates through 4-level mask process to yield a simple fabrication process. In this work, we also have examined the dependence of electrical performance on the interface surface state of gate dielectric/pentacene, which may be modified by chemical properties in the gate dielectric surface.

  • PDF

Current-Voltage Characteristics of Molecular Electronic Devices Using a Amino-Style Derivatives (Amino-style 유도체를 이용한 분자 전자 소자의 전류-전압 특성에 관한 연구)

  • Kim, So-Young;Koo, Ja-Ryong;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.882-885
    • /
    • 2004
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nanoscale components and Si-technology. In this study, molecular electronic devices were fabricated with amion style derivatives as redox-active component to compare to the devices using Zn-Porphyrin derivatives. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method, and then this LB monolayer is inserted between two metal electrodes. According to current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. Diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with the organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and the top Al electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.

  • PDF