• 제목/요약/키워드: Electric-field coupled

검색결과 153건 처리시간 0.025초

Chiral 매질에서, 전자기파의 비선형성과 여러겹 구조에서의 Coupled-mode theory에 관한 연구 (Theoretical study of Electromagnetic Waves in Chiral media: about Nonlinearity & Multilayers)

  • 정윤찬;이혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.547-551
    • /
    • 1995
  • We analyze the nonlinearity of chiral media and coupled-mode theory of chiral multilayers. In first topic, second order nonlinear coupled equations are constructed and a phase matchine method is suggested. This approach can be developed to higher order nonlinearity and electric-field-induced second harmonic generation. In second topic, coupled mode equation in chiral multilayers is constructed, and solved for both codirectional coupling and contradirectional coupling. There is a previous formulation about chiral mutilayers[1] with 4$\times$4 matrix but it did not give detail results, so this approach will be compared with that.

  • PDF

BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석 (Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

전기집진에서의 난류 입자 이산 (Turbulent Particle Dispersion Effects on Electrostatic Precipitation)

  • 최범석
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

평등전계에서 도전성 구형 입자의 운동 (Motion of Conductive Spherical Particle under Uniform Electric Field)

  • 임헌찬
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.39-47
    • /
    • 2011
  • The motion of a conductive spherical particle under uniform electric field is investigated in order to find a suitable method for removing the conducting solid impurities contained in liquid plastic. When the positive dc voltage applied to the upper electrode, the vertical up-and-down motion of a charged particle by electrostatic force is observed by a charge-coupled device (CCD) camera or a high-speed video camera. The experimental data of the static threshold voltage by which the particle starts to move toward the counter electrode in air or silicone oil are in good agreement with theoretical value. When the applied voltage is larger than the static threshold voltage, the particle motion pattern in silicone oil consists of four stages: upward motion, stopping at the upper electrode, downward motion and stopping at the lower electrode. The stopping motion on the electrode is thought to be caused by the liquid flow accompanied by the particle motion. The particle charge calculated by integrating the pulse current, which is generated by the charge exchange between the electrode and the particle, is approximately 0.1~0.25 times of the theoretical value. This study is expected to help understand the electric properties of microparticles in oil circuit breaker (OCB) and oil transformer and improve their performance and longevity.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

슬롯 고조파를 고려한 전기기계 공극자계의 해석 방법에 관한 연구 (A study on the method of Air gap field Analysis considering slot harmonics in the electric machine)

  • 임달호;김생수;김영중;윤상백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.33-36
    • /
    • 1987
  • Is this study it is proposed a method which is able to compute preciously using time-difference method to the air-gap magnetic field in electric machines take into account of eddy current induced. The air-gap magnetic field has slot harmonics which are due to the structure of machines and the shape of slot harmonics varies with the related positions of slots when the rotor moves. Accordingly, considering the influence of slot-harmonics, we coupled macro-air-gap element with first-order triangular elements in domain and used direct-convergence method for magnetic saturation.

  • PDF

Electromagnetic Field and the Poetry of Ezra Pound

  • Ryoo, Gi Taek
    • 영어영문학
    • /
    • 제57권6호
    • /
    • pp.939-958
    • /
    • 2011
  • Ezra Pound has an idea of poetry as a field of energy in which words interact with each other with kinetic energy. The energy field which Pound creates in his poem is analogous to the theory of electromagnetism developed by Michael Faraday and James Maxwell, who look upon the space around magnets, electric charges and currents not as empty but as filled with energy and activity. Pound argues that "words are charged with force like electricity," demonstrating that words charged with their own images or energies of positive or negative valence interact one another. This idea is similar to Faraday's concept of "line of force" which he used to represent the disposition of electric and magnetic forces in space. Pound's concept of "image" as an "intellectual and emotional complex in an instant" is remarkably consonant with the confluence of electric and magnetic fields that are coupled to each other as they travel through space in the form of electromagnetic waves. The instant profusion of conception and perception, much like that of electric and magnetic fields, enables Pound to move beyond the sequential and linear hierarchy in time and space. Particularly, Maxwell's stunning discovery that the electromagnetic waves propagate in space at 'the speed of light' has allowed Pound a relativistic sense of escape from the limitations of Newtonian absolute time and space. Pound's poetry transcends any geographical space and sequential time by rendering and juxtaposing images simultaneously. Pound was fully aware of light and electricity fundamental to what he called his world "the electric world." Pound's experiments in Imagism and Vorticism can be considered an attempt to rediscover a place for poetry in the modern world of science and technology. Almost all the appliances that we think of today as modern were laid down in the closing decades of the 19th century and the first decades of the 20th century, in response to the availability of electromagnetic energy. This paper explores how Pound responded to the age of modern technology and science, examining his conception of "image" through his many analogies and similes drawn from electromagnetism. Pound's imagist poetics and poetry come to embody, not only the characteristics of the electric age in the early twentieth century, but the principles of electromagnetism the electric age is based upon.

Determination of Surface Currents on Circular Microstrip Antennas

  • Godaymi, Wa'il A.;Mohammed, Abdul-Kareem Abd Ali;Ahmed, Zeki A.
    • Journal of electromagnetic engineering and science
    • /
    • 제12권4호
    • /
    • pp.260-270
    • /
    • 2012
  • This work aims to present a theoretical analysis of the electric and magnetic surface current densities of a circular microstrip antenna (CMSA) as a body of revolution. The rigorous analysis of these problems begins with the application of the equivalence principle, which introduces an unknown electric current density on the conducting surface and both unknown equivalent electric and magnetic surface current densities on the dielectric surface. These current densities satisfy the integral equations (IEs) obtained by canceling the tangential components of the electric field on the conducting surface and enforcing the continuity of the tangential components of the fields across the dielectric surface. The formulation of the radiation problems is based on the combined field integral equation. This formulation is coupled with the method of moments (MoMs) as a numerical solution for this equation. The numerical results of the electric and magnetic surface current densities on the outside boundary of a CMSA excited by $TM_{11^-}$ and $TM_{21^-}$ modes are presented. The radiation pattern is calculated numerically in the two principle planes for a CMSA and gives a good results compared with measured results published by other research workers.

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

동전기정화 및 투수성반응 복합기술에 의한 오염지반의 복원 (Remediation of contaminated soil by the coupled technique of electrokinetic method and permeable reactive method)

  • 정하익;이명호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.348-351
    • /
    • 2006
  • This paper presents preliminary laboratory investigations on the electrokinetic (EK) remediation coupled with permeable reactive barrier (PRB) system. Atomizing slag was adopted as a PRB reactive material for remediation of groundwater contaminated with inorganic and/or organic substances. A series of laboratory experiments were performed with variable conditions such as (i) type of contaminant, (ii) applied electric field strength, (iii) processing time, and (iv) the application of PRB system. From the preliminary investigations, the coupled technology of EK with PRB system would be effective to remediate contaminated grounds without the extraction of pollutants from subsurface due to the reactions between the reactive materials and contaminants.

  • PDF