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Abstract. . .

We analyze the nonlinearity of chiral media and coupled-mode
theory of chiral multilayers. In first topic, second order nonlinear
coulped equations are contsructed and a phase matching method is
suggested. This approach can be developed to .higher order
nonlinearity and electric-field-induced second harmonic
generation. In second topic, coupled mode equation in chiral
multilayers is constructed, and solved for both codirectional
coupling and contradirectional coupling. There is a previous
formulation about chiral mutilayers[1] with 4x 4 matrix but it did
not give detail results, so this approach will be compared with that.

1. INTRODUCTION.

Since chiral or optically active media were first recognized and
elucidated by Biot, Arago, Pasteur, and Fresnel in the early 19th
centry, it has been interest of scientists and detail propertics have
been elucidated. Recently chiral reflection, refration,[2]-[5]
propagation through dielectric-chiral slab,[6],[7] mutilayers,[1]
waveguides[8] and etc.,[9L[10L{11] are being investigated
theoretically or experimentally. And it is expected that chiral
media will received increased attention because of their unique
charactistics in cross coupling of elctric and magnetic fields.
(12},[13]

Chiral objects[1] are those that cannot be superposed upon thelr
mirror images. Such object appears in either left- or right-handed
form. Thus the geometrical notion of chirality is linked to
handedness. Chiral materials are composed of handed constituents
at the microscopic and/or macroscopic levels, which are embedded
in a host medium. In addition to the permittivity and the
permeability, a quantity denoted the chiral admittance[9],{14] has
been introduced to couple the electric field field to the magnetic
field and vice versa. This leads to generalized set of constitutive
relations among the electromagnetic-field vectors, The magnitude
of the chirality admittance determines the strength of chirality,
which controls the cross coupling of electric and magnetic fields in
the medium, while its sign indicates the handedness of the
medium.[15]

Because of the cross coupling effect, the engenmodes of chiral
media are left- and right-handed circular poarization which have
different phase velocities. So there are different aspects although
chiral media are isotropic.

There are a lot of material which exhibit chiral effect, for example,
biological materials like sugars, aminoacids, DNA, crystals like
Quartz, AgGaSy, TeO; and recent theories predicted chiral effect
in high-temperature supercondoctor.[16] Thus, the analyses of
chiral media have importance and are applicable to many regions.

2. CHIRAL MEDIA CHARACTERISTICS.
For a medium which is homogeneous, lossless, isotropic and chiral

with permitivity g, permeability 1, and chiral admittance g , the
electromagnetic-field vectors are related by the chiral constitutive
relations by Post relations{14] for time harmonic electromagnetic
fields with exp[jt ] excitation, such that

D=¢E-iB, H=B/p -iE. [2.1]
This provides direct coupling between electric and magnetic fields
owing to the chirality of the medium in addition to that given by
Maxwell's equations.

Using the constitutive relations in Eqs.[2.1] with Maxwell' ’
equations, then the source-free chiral Helmholtz equation is

VxVxE + p.e%}f— + 2iu§c§(VxE) =0. [2.2]

The eigenmode solutions of Eq.[2.2] are circularly polarized

waves of either left- or right-handedness such that

E,, = u,E, Exp[-ik,z]: E, = u, E; Exp[-ik.z}}

E,, = ug By Expliky,2]s  Eg. = uy Ey Explik, 2} [2.3]
where

ke, = op{(e/p + DS - £} k. = opl(e/p + £ + B}
Ky, = —0p{(e/p + EYE — &) ky. = —opf(e/p + EIYE 4+ £)

1 [t 11 a1y 1=

“n=72"[i]’ “r-—7‘2= ~i 4 “s¢—72' i 4 “--"75‘ -
where [+],[-] denotes left-handedness and right-handedness
respectively and F,B denotes forwad-going wave and backward-
going wave respectively.
Corresponding to above results, let us define that the medlum
which exhibits that left circularly polarized wave propagates faster
than right circularly polarized wave is lefi-handed medium, i.e.,
£.>0 and vice versa.

3. NONLINEARITY OF CHIRAL MEDIA.

On concerning of second harmonic generation, the main thing is
phase matching[17). There are some phase mathing methods using
anisotropy of materials; Type I, Type Il and using waveguid. Thus
isotropic materials which lack of centrosymetry cannot be
candidates of SHG although they have considerable amounts of
second order nonlinearity. But point-group-23 has both second
order nonlinearity and chirality[17),[18], which exhibits a
possibility of phase mathing by circular dichroism and some
assistance.

3.1. SECOND HARMONIC GENERATION.

Only considering electric second order nonlinear polarization, the
constitutive relation Eqs.[2.1] and the chiral wave equation.
Eq.[2.2] are changed such that

D =cE- B + P, (3.1.1]

VxVXE + m% + 2ipz;g—t(vXE) + p?—P,L =0 [3.12]

al
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The second order nonlinear tensor of point-group-23 has
nonvanishing componets d|23 =d|32 = dm = dm .—.d3I2 = dm,
{17] The tensor d, is that of principal coordinate system of crystal,
thur it is necessary to transform it to the propagation coordinate
system. In the system of propagation axes, z' coincides with the
direction of propagation k, and x' is chosen so that X'z plane
-contains the ¢ axis of the crystal (z axis) and the y' axis is
perpendicular to 2'and x'. Then transformed second order nonlinear
tensor is given by

d,p =R R,R d, (3.1.3]

ik
cosBcos¢p cosOsing ~sind
where R =| -sin¢ cos¢ 0
sinBcos¢ sinBsing  cosd
Yet, this is that of linear polarization system, thus one more
transformation to circular polarization system is needed. Since the
propapation mode is transverse (isotropic), the longitudinal
component can be elliminated. Hence, the final results for second
order nonlinear tensor is given by

. - B 1 -i .
Cor =BTy v 7= 17

1

[3.1.4]

and g, B,y denotes [+],[-].

Notion ; the second or third term must be complex conjugated
when j th or k th electric field is complex conjugated respectively.
Previously assumed that the direction of propagation is along 2z
axis, let us specialize the problem to one dimensional by taking
9/8x=09/0y=0, and also limit the consideration to two
frequencies 2 and take the corresponding fields to be in the
- form of traveling plane waves as

EX(z1) = u.E, (2)Exfi2et—k, 2)]s

E3(z,t) = u,E, (2)Expli(et~k,2z)] {3.1.5]
From the Eq.[3.1.2] assuming that the variation of complex fields
amplitudes with z is small enough so that |kdE/d2} >> [d’E/ dz’|
‘we get following equations,

for second harmonic, 2¢

4uw’EE. C
Lo o i 2OEECen g, -k ~k,)2h
dz 4pE, (o +2k,,
‘for fundamental harmonic,
dE 2uw’E, E.C
P . ey’ p ko.+k —k [3.1.6]
dz ' 2ME, (e + 2k CePLCKe ki —ky)2)

_Generally in optical region, ¢(20)>e(w) by dispersion and
&, >%,s & is almost propotional to frequency,{12],[13] ie.,
E xgd/ot, to satisfy the phase matching condition, the most
reasonable candidates are the pair of E_(0),E,(20) and
E.(®),E_(20) in lefi-handed medium and in right-handed
medium repectively from refering to Egs.[2.3].

Assuming the medium is lefi-handed, i.e., >0 with Egs.[3.1.6],
[2.3] we get

E _ ———”“’E'-C*-; 57 Expliskz],
dz (pe, +(n€, )’)?

E, E ,
LR -’-“‘”—*"C-;—-yﬁxp[-mkz] [3.1.7)
dz (ne, +(pE, )"
where Ak = k,, — 2k,

= 20{(ue, + (K5, )V - (ne, + (18, )% - &, — pE, }

Stlll Ak may be positive, so we must assist Ak to be zero with
something, loading static magnetic field along z direction i.e.,
using Faraday effect[1]. Then the constitutive relfation Eq.[2.1] is
changed to be

D = ¢E - i£B + ig,yB, xE, where B, = Bz [3.1.8)
Together Eq.[3.1.8]Jand wave equation Eq.[2.2]gives that the
eigenmodes are still left- and right-handed circularly polarization
but the wave numbers are changed such that

k= pol(e+e)/n + £V - &),

= po{(e-g)/p + S + &) {3.19]
Thus the external static magnetic field can make k value bigger or
smaller to left- and right-handed polarized wave repectively and
vice versa. In our case, the purpose is to make k, smaller and
k,_bigger, so the direction of the static magnetic field must be
opposite to z axis.

Then, Eqs.[3.1.7] are changed to be

9E,. = —i —E%‘"— Exp[iAkz],
dz (e, — ) + (B, ;
dE, _ _,_ weEEC. . Exp[-iakz) [3.1.10]
dz ((pe, +8)+ (REOD” -
where Ak = k,, -2k, = 20{(1(, - g,) + (RE,.)')*

~(B(E,+ 8)+ (B~ B~ BE,)
The parameter g does not affect the nonlinear equation, and only
¢ is exchanged withg 4 g or g —g.

3.1.1 SHG WITH UNDEPLETED INPUT.

-Assuming that the amount of power lost from the input (¢)) beam

(by conversion to (2¢)) is negligible; i.e., dE,/dz = 0, so we
consider only the first equation of Eqs.[3.1.10}. The solution for

'E,.(0)=0 and for a medium of length L is

E - i ueELC, Exp[iAkL] -1

. : [3.1.1.0]
((pe, —g) +(1E, Y)Y ik

3.1.2 SHG WITH DEPLETED INPUT. _ _
If Ak is zero and the length L is long enough, then the input beam
is depleted. In this case, we must take some steps to solve the

problem as
"di - iCAAL id’h ;mf 3.1.2.1]
where

A = J" I_) A J 2@’ K= — 2(1) ,__, "_= _’_.p

al = (g, +g)/n + &Ie' az = (8,‘3)/[& + ‘r;u .
Assuming there is no SH input, the Eqs.{3.1.2.1] give
;;([A,r + 2A,[)=0, A + 2A,1 = |AO)f
We can take A to be real and A, to be complex with constant
phase. Unless A, has constant phase, the SH wave has different

phase velocity from the eigenmode,so it is not the propagation
mode, thus we take

[3.12.2]

A, = JA;[Expl[i8]: x = |k|Exp[i3] [3.1.2.3)
Together Eqs.[3.1.2.1},[3.1.2.2],[3.1.2.3] we get
A dl:’l —|x|(Expli(8 - 6-—)}(!;\ (0)| 2|A,|’) [3.1.2.4)

since left side is positive real generation occurs, § —9 - /2 must
be the integers’ multiple of 2¢.
We obtain the solution to be

A= TA (O)tanh[A 10 O [3125]

4. COUPLED MODE THEORY OF CHIRAL
MULTILAYERS.

The propagation of electromagnetic radiation in periodic
media{17] exhibits many interesting and potentially useful
phenomena. These phenomena are employed in many optical
devices such as diffraction gratings, holograms, free-electron
lasers, distributed-feedback lasers, distributed-Bragg-reflected
lasers, high-reflectance Bragg mirrors, acousto-optic filters, Solc
fillters, and etc.. So chiral mutilayers has a possibility to new
applications.

4.1. CHIRAL REFLECTION AND REFRACTION.
For a chiral-chiral interface{1], each of the two circularly polarized
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incident waves with opposite handedness is coupled to reflected
and transmitted eigenmodes of both handedness. This is because
the interface is matched to linear eigenmodes rather than to the
circular eigen modes characteristic of chiral media. Thus planar
boundaries provide coupling between the chiral eigenmodes. From
a mathematical point of view, the boundary condition cannot be
matched by waves of a single handedness, so waves of both
handedness are needed.

From above results in section 2. we can let the incident, reflected,
and refracted waves as

= 7%[(:05"& i —sin‘&]T‘E‘ i (xE r2e000)

i . R LN X .
+—=lcodB. ~i —sin'g | 'E_gik-bonteredts,
oy ]

H=-—E, + —~E_,
o

E= %[— cos0, i —sin'e']T 'E, gl (a0 mxeofh)

+_l_ —cod®  ~i —sind. B TR gkt zwt)
V2
He B, + B
n 1
=:/———[cos‘6+ i —Sin'Q,]T 'E§ gk (xsinD, +2oar'd.) .

-~ e-ik’.(x sin'0, +2.00¥D.)

+72={cos‘9_ ~i ~sin'6 ] 'E

‘H=w—E, + —E_ {4.1.1)
n

where 1), vy’ are wave impedences of media as

Un=(e/p+ eV U=y + g% and

0,6 10,70.0,'0 are arbitrary yet.

From the boundary conditions, i.e., continuities of tangential
components of E and | fields, we get from one of those to satisfy
the boundary condition for whole boundary region, R

k,sin'0, =k_sin'6_ =k, sin'0, =k_sin'0_ =k, sin'0, =k sin'0_
thUS, letg =0, =0, 6.5'0 =0, 0,='0,, 0 =0, [4.12]
This is known as chiro-Snell' law. Thus we get those in matrix
form as

-1 1 17 - ‘E, 1 -1
co), co cod, cofl ||’E ) jcod, codb |'E,
B n |E] 1 {E}
cod), ~cod. ncodd, -mcod ||'E | [cod, -—cod.
where n =n/n [4.1.3]

This result correponds with the privious result by D.L.Jaggard et
al,[1] so the final result needs not be written. Because the result is
so long and complicated. The important thing is the couplings
among the modes.

4.2. COUPLED EQUATIONS OF MULTILAYERS.

We represent the problem of chiral multilayers with four
modes,i.e. forward-going waves of both handedness and
backward-going waves of both handedness, by well known
coupled-mode theory.[8L,{17]

We start from the Lorentz reciprocity.

VA(ExH +E xH) = 0 [4.2.1}
We verified the Lorentz reciprocity, i.e., Eq.[4.2.1] is held for
eigenmodes of chiral media. It is trivial because chiral media are
reciprocal media{14].

Assuming there is no change in permeability, i.e., the media are
non magnetic, and the perturbations are given as Ag, Ak, after
some mathematical manipulations together the perturbed mode (it
is represented with prime superscript.) and unperturbed mode with
Eq.{4.2.1]and neglecting only the term HAE? sit is much smaller
than others since we know the orders as ¢~ 107 p» 107, =<10°
Then we obtain

V(B xH, + E.x H)=—io (ipA; (H, E - E,-H) +AeE"-E})
where {4.2.2)

the subscript n denotes one of the unperturbed eigenmodes, i.e., in
our case, | indicates forward-going [+] handed wave, 2 indicates
forward-going [-] handed wave, 3 indicates backward-going [+]
handed wave, 4 indicates backward-going -] handed wave.

Using the method of variation constant with eigenmodes, we take
the perturbed mode as

E =Y a,(2)E.
H =B/p~i(E, +4E,)E
_2 a ()H, + 'ud“ =(2)

At thts point we define the cigenmodes refering to the above result
in section 4.1. such that

E, =e Exp[~iBz], H, =h, Exp[-ifz]s
E, =¢, Ex{~ifz), H,=h, Exp[~iB,z],
E, =, Exp{-iB,z), H, =h, Exp[-iB,z},
E,=¢, Exf-ifz], H,=h, Exp[-iBz]

{4.2.3]

—=2=(zxE,) ~iALa (2)E,

4.2.4]

where B, =, =k, cos6,, B, =-B, =k.cosd_
e;%[cos@w i -sing,], b, =--:~;e,
e1=712=[c¢356_ -i =sind [, h,=ie,
e,z-}w[vcose, i ~sin9,]f, h,=——:‘1«e,
e = f[ —co®) i —sind], h,=—¢,

Substituting Eqs.[4.2.3] with Eqs.[4.2.4] for perturbed mode in
both sides of Eq.[4.2.2]

The result of lefi side is given to be
Left side = L(1) + L(2) + L(33)

Ly = Zv-{amxﬂ xH, +E. xa H,} [42.5)

Z——z (e, x b, +e, xh )Exp[-i(B, -B,)z]

in which the Lorentz recxproc ity was applied for eigenmodes.
LQ2)= ¥'v. i da, E
(2) % {E..><[mu o (zxE)]

> ﬁ(ﬁ.-ﬁ.)"—gjz-{e‘.x(zxe.»

xExp[~i(B, - B,)z] [4.2.6]
where we eliminate the second order derivative term assuming
(B, - B,)da, /dz >> |d'a,/dz|-

L3) = ' V. (€, x{-iAEa,E,)}

i, a8, (0, ~PIn) 2 xe,)

xExpl-i(B, - B,)z] @27
where we eliminate the second order term AE_da_/dz assuming
|AE | <<|(B, ~B,) /on] » it is identical the elimination in
Eq.[4.2.2].

Right side = Z-i&{Ag(e: -e,)+ipAL (hy-e e, b )2}

xExp[-i(B,, - B,)z] {428
where we eliminate the terms, AL _da, /dz and PAE;: as we did in
Eqs.[4.2.2].[4.2.7).

Finally, from the equality of both sides, we obtain the coupled
equation as

%, o pupf-ipzl{z- (e b, + € xB,)

(B, B, 2 (€, x (zx e}
op

=3 a,Exp[-iB,2]{-iwAc(e, -e,) 1o be continued
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+AE[(B, -B,)z:(e, x e, ) +op(h, e, ~e; h,)]
dAE,

+i—=z:(e, xe,)} [4.2.9]
dz

This equation is valid for n = 1,2,3,4, so there are four independent
equations,thus with n=1,2,3,4, the Eq{4.2.9] can be constructed in
matrix form after further mathematical manipulation as

ae

ae*l M Q| dag |8 T
R e

[ 2™

[ a-ifit -ip Ba 2]
[a,e e a.e ae™ ae ]

where (4.2.10]
(M N h "' {eed
B G [(ﬁ ~B,)ezev, ]} {eed, ]
[P Q] . ;

-0 —P] —_-l{[ehvm]+ m—u[(B,n -B,ezev,. I}

) (B, -B,)eev,, ] +op[ebd,, ]}
S T

TS =-i{ehv,, ]+ [(B -B,Jezev, ]} [eev,,]

where the prime denotes derivative to z and . 1's denote
matrices after the initial of terms in Eq.[4.2.9]and the eliments of
matrices are submatrices in 2 x 2 form and all of the matrices have
real values, thus we can manipulate the problem according to the
amount of perturbations Ag,A% . (we can simplify the Eq.[4.2.10}
further or not, such that the terms of muliple (8 -B,), (B, -B,)

.. ¢can be eliminated since the terms smaller than others by the order
07 or the smaller.)

With the coupled equation provided, we can solve the problem of

chiral multilayers for arbitrary perturbations numerically or

analytically for special cases.

4.3. ANALYTICAL SOUTIONS FOR SPECIAL CASES:
.~ PERIODIC LAYERS. -

In the periodic layers, the perturbation of permittivity, A¢ and the
perturbation of chiral admittance, Af can be represented with their
Fourier series such that

At -Ze Exp[- lp—]1 A, Z§ Exp[— P"‘]

'where A isthe penod of layer and p is any integer number except
for zero .
After further mathematical manipulation, together Eqs. [4.2.10],

{4.3.1]

[4.3.1]) we get [4.3.2]
ag

ae® A P Q] amfs T
de® Zé“ {_IE[N M] ={ o P] pA[T s]»
ae™

{ae™ ae™ ae® ae™ ]T
By the rule of well-known coupled-mode theory, we can consider
only the terms which satisfy the resonant coupling condition, i.e.,
the phase term is near zero.

4.3.1. CONTRADIRECTIONAL COUPLING IN

PERIODIC LAYERS.
Assuming 2x/A >>|[§I - le, so resonant coupling can occur
between mode1,2 and mode 3,4 only, we can rewrite Eq.{4.3.2] for
resonant couplings assuming that the resonant coupling occurs at

p=m,as [4.3.1.1]
ae
ae®| ; e"‘"z/"\‘ 0| e, O 0 N
aet | 0 e“"’; 0 e,.||-N -0
a e

2n
En O 0 Q] |™x °_o'r)}
“lo 2.0 0 0 "'“?/1{ T 0
{ae™ ae® ae™ a‘e“”‘]T

Assuming the lossless medium, ie., g_=¢'_, £ =&, and
combining the second line gives

ae™ -
-3
ge% | [&% o [fJe. 0][ 0 N [i. 0][ O R
£ "7 o &Sl N of [0 Ef[-R 0
o J
ag :
{ae™ ae® ae™ a,e“"‘]T
where [4.3.1.2]

2n
o R] [0 Q] (™4 0'0'!‘
-R 0]7{-Q 0] | o _m2®fiT 0
A

Let the trial solution as

128 i, -ith, -,
a=A(2)e? ,a,=A(2)e ? ,a,=A(2)e ? ,a,=A(2)e ?

[43.13]
where  Ap, =28, ~mZ", A, =29, -m 2"

Then,

A, A, A,

A WAL x| [43.1.4]
AT Lw sl]a, A,

A, A, LA,

where

W=-ifeN-E_R), A= 2

and prime denotes derivative to z.

Hence, the problem is terminated in the eigenvalue problem of
linear differential equation system. The characteristic equation,
ie., |x_u[=o gives eigenvalues, 3 A ,-},-A, and
corresponding eigenvectors, V, 'V, V,.V,

Thus, the solution is given by

T
[al a, a, aa] = Ppng'v.iwvx's.a.'
where

Com[a,(0) 8, 0 Of
[4.3.1.5]

— * 0
Pphm - 0 & Vei.-mc,=[vx v, v, vc]’

0 e 0 L le™ 0

S = |, where $= , = ,
10 [ ] ~

Cout. = ([0 0]'Vdm'+|:0 I].vam.'s-d.lm.} '

where [. denotes identity matrix and the value of coefficient
matrix is found from the boundary condition which is a (0),2,(0)

at entrance and 3 (L) =a,(L)=0 at exit.

4.3.2. CODIRECTIONAL COUPLING IN PERIODIC
LAYERS.

Assuming 2x /A = ‘BI _ﬁz|, so resonant coupling can also occur
between the mode 1 and the mode 2, and between the mode 3 and
the mode 4,in this case, the coupling constants for between the
mode 1,2 and the mode 3,4 are too small by the order, <1072,
thus we can manipulate the problem with M, P, S in Eq.[4.3.2]and
only with a ,a,. The procedures are similar to contradirectional
coupling. Then, the coupling equation is given by
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\: ae j} -&n:
| =le
.

a,e ! 0

where

B M T

. [ale'“"z aze'“’"]
[4.3.2.1]

2n
{ 0 L,z}—[o Plz} m—X‘ O {:0 Su}
L:\ ¢ PII 0 0 _m.z.lg. Szl 0
and the subscript of matrices’ eliments indicates the component of

that matrices,
Let the trial solution as

i, -4,
a,=A(z)e?, a,=A(2z)e’

{4.3.2.2}
where AB=f, - ﬁz—m-——
Then,
iAR
o-=E W
[A}} =l 2 g {A’} Ex.[A’} [4323]
Al owg BBlAL T A
2
where

0 W [0 Mo L]
WZ.I 0 s:nMZS 0 é:nLZl 0 :

and prime denotes derivative to z.

Thus,
a; . 2,(0)

=P Vo 8 Coml 432.4
(2] e Vo s [0 (4324
where

if’z‘!x 0 e 0

P ¢ » S =
i i} e'f?l WL {io e'm}

ng:nvec { 2 ] ! Cmeﬂ‘l Vt:senvn

where 3 ,~} ~are eigenvalues of characteristic equation
ix M[ 0.and V,, Vv, are corresponding eigenvectors.
In this format, the absolute values of W, W, are slightly different

12
because of slightly different charateristics of transmission of mode
tand mode 2. If you have a question why the intensity is not
conserved properly, the answer is that in chiral media, there must
be additional two modes, i.e., mode 3,4 to describe properly, Thus

4 x 4 analysis is needed.

5.CONCLUSIONS,

In this paper, we investigate the nonlinearity of chiral media and
coupled-mode theory of chiral multilayers. We propose a
possibility that SHG can occurs with the assistance of external
static magnetic ficld and this approach will be applicable to THG
and EFISHG. There is a possibility that the chiral admittance may
have nonlinearity, thus it is necessary to elucidate the property
theoretically and experimentally. And coupled-mode theory of
chiral multilayer provide analytical results of periodic layers and
in arbitrary layered structure, the solution will be given by some
numerical assistance with the equation provided. The results
suggest a possibility to obtain circular polarizer, chiro-Bragg
reflector, mode converter, and etc.. And it is also applicable to
some perturbation theories.

We expect that further research will bring out a lot of interesting
and useful stories into the world from the secret novel of chiral
media.
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