• 제목/요약/키워드: Electric voltage

검색결과 4,165건 처리시간 0.027초

수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구 (Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV))

  • 이순용;서원범;임지선;최재훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

전동차내 임펄스 전압인가에 따른 인버터구동형 유도전동기의 PD 특성 (PD Characteristics of inverter-fed AC motor subjected to impulse voltage in electric train)

  • 이강원;김명룡
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.564-565
    • /
    • 2005
  • AC induction motor equipped in electric train is driven by VVVF inverter which produces switching pulse like impuse. Impulse voltage is more dangerous than continuous alternative voltage for the insulating performance of AC induction motor. This paper has investigated PD characteristics caused by impuse voltage for stator coils inserted in AC induction motor.

  • PDF

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

전기로 부하에서 SVC의 플리커 효과에 관한 연구 (A Study on the Fliker Effect of SVC in Electric Arc Furnace Loads)

  • 김경철;진성은;이일무
    • 조명전기설비학회논문지
    • /
    • 제20권8호
    • /
    • pp.48-53
    • /
    • 2006
  • 제철소에서 사용되고 있는 전기로는 전력계통에 전압 변동을 일으키며 시간에 따라 변하는 비선형 부하이다. 플리커는 전압 변동의 크기에 따라 램프의 방출 변화에 의한 인간의 지각 효과로 정의된다. 플리커 레벨은 전압 변동의 크기, 주파수 및 기간에 의해 결정된다. 본 논문에서는 전기로 부하로 인한 154[kV] 시스템에서의 전압 변동 문제를 측정하고, 플리커 저감을 위한 SVC 적용 결과를 분석하고, IEC 61000-3-7에 의하여 플리커를 평가하였다.

절연유체 내 2상유동을 고려한 뇌임펄스 응답 유한요소해석 (Finite Element Analysis for Dielectric Liquid Discharge under Lightning Impulse Considering Two-Phase Flow)

  • 이호영;이종철;장용무;이세희
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2097-2102
    • /
    • 2011
  • Discharge analysis technique for dielectric liquid was presented by using the Finite Element Analysis (FEA) under a lightning impulse incorporating two-phase flow phenomena which described gas and liquid phases in discharge space. Until now, the response of step voltage has been extensively explored, but that of lightning impulse voltage was rarely viewed in the literature. We, therefore, developed an analyzing technique for dielectric liquid in a tip-sphere electrode stressed by a high electric field. To capture the bubble phase, the Heaviside function was introduced mathematically and the material functions for the ionization, dissociation, recombination, and attachment were defined in liquid and bubble, respectively. By using this numerical setup, the molecular dissociation and ionization mechanisms were tested under low and high electric fields resulted from the lightning impulse voltage of 1.2/50 ${\mu}s$. To verify our numerical results, the velocity of electric field wave was measured and compared to the previous experimental results which can be viewed in many papers. Those results had good agreement with each other.

평등전계에서 도전성 구형 입자의 운동 (Motion of Conductive Spherical Particle under Uniform Electric Field)

  • 임헌찬
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.39-47
    • /
    • 2011
  • The motion of a conductive spherical particle under uniform electric field is investigated in order to find a suitable method for removing the conducting solid impurities contained in liquid plastic. When the positive dc voltage applied to the upper electrode, the vertical up-and-down motion of a charged particle by electrostatic force is observed by a charge-coupled device (CCD) camera or a high-speed video camera. The experimental data of the static threshold voltage by which the particle starts to move toward the counter electrode in air or silicone oil are in good agreement with theoretical value. When the applied voltage is larger than the static threshold voltage, the particle motion pattern in silicone oil consists of four stages: upward motion, stopping at the upper electrode, downward motion and stopping at the lower electrode. The stopping motion on the electrode is thought to be caused by the liquid flow accompanied by the particle motion. The particle charge calculated by integrating the pulse current, which is generated by the charge exchange between the electrode and the particle, is approximately 0.1~0.25 times of the theoretical value. This study is expected to help understand the electric properties of microparticles in oil circuit breaker (OCB) and oil transformer and improve their performance and longevity.

하이브리드 및 전기 자동차용 LDC 재생형 부하 시험기 설계 (Design of a LDC Recycling Load Tester for Hybrid and Electric Vehicles)

  • 이춘일;홍연찬
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.6258-6263
    • /
    • 2014
  • 하이브리드 자동차나 전기 자동차에 사용되는 LDC(Low Voltage DC-DC Converter)는 고전압 배터리 측의 높은 DC 전압을 입력 받아 낮은 전압인 12V로 강하시켜 전장부하 장치의 전원 공급 및 보조 배터리의 충전용으로 사용된다. LDC는 생산 공정 중에 장시간의 부하시험을 하는데 부하시험 시 전력을 100% 열로 방출하는 구조로 에너지 소비가 매우 큰 단점이 있다. 따라서 본 논문에서는 재생형 방식의 부하시험 방법을 제안하여 낭비되는 전력의 75~90%의 에너지 절감을 실현하였다.

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.

직류전동차 탑재용 피뢰기의 최적선정에 관한 연구 (A Study on the Optimal Selection of Lightning Arresters for DC Electric Traction Vehicles)

  • 길경석;류길수;송재용;김일권;박대원;한문섭
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.112-116
    • /
    • 2007
  • In this paper, we proposed a selection and application recommendations of ZnO arresters for DC electric traction vehicles. To decide the Continuous Operating Voltage($U_C$), the Rated Voltage($U_r$), and the Nominal Discharge Current(In), we measured and analyzed system voltages and surge currents flowing the arrester installed on a DC electric traction vehicle under running state. System voltages measured up to 1,800 V in 1,500 V-system, and surge currents were recorded up to 3 times per a running-service-route and their magnitudes were ranges of $150A{\sim}2kA$. From these results and a standard EN50163, we could proposed $U_C$, $U_r$, and In available for the 1,500 VDC electric traction vehicles.