• Title/Summary/Keyword: Electric vehicle batteries

Search Result 164, Processing Time 0.026 seconds

Li-Ion Traction Batteries for All-Electric Vehicle (전 전기자동차용 리튬이온 이차전지 기술동향)

  • Cho, Mann;Nah, Do-Baek;Kil, Sang-Chul;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The production capacity of EV models should be sufficient to achieve the goal of one million EVs by 2015. Large-Format lithium-ion battery are expected to find a prominent role as ideal electrochemical storage systems in traction power train for sustainable vehicles such as all-electric vehicles. This review focuses first on the present status of production lithium-ion battery technology and cooperative relations of between battery and EV makers, then on its near future development.

Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicle (플러그인 하이브리드자동차용 리튬이온 이차전지)

  • Cho, Mann;Son, Young-Mok;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.81-91
    • /
    • 2010
  • Plug-in hybrid electric vehicles(PHEVs) are gaining attention over the world due to their abilities to reduce $CO_2$ emission and gasoline/diesel consumption by using electricity from the grid. Lithium ion battery is one of the most suitable candidates as energy storage device for PHEVs applications up to 2030. This review focuses on the present status of lithium ion battery technology, then on comparison of the performance characteristics of the promising cathode materials.

An Optimal Energy Storage Operation Scheduling Algorithm for a Smart Home Considering Life Cost of Energy Storage System

  • Yan, Luo;Baek, Min-Kyu;Park, Jong-Bae;Park, Yong-Gi;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1369-1375
    • /
    • 2017
  • This paper presents an optimal operation scheduling algorithm for a smart home with energy storage system, electric vehicle and distributed generation. The proposed algorithm provides the optimal charge and discharge schedule of the EV and the ESS. In minimizing the electricity costs of the smart home, it considers not only the cost of energy purchase from the grid but also the life cost of batteries. The life costs of batteries are calculated based on the relation between the depth of discharge and life time of battery. As the life time of battery depends on the charge and discharge pattern, optimal charge and discharge schedule should consider the life cost of batteries especially when there is more than one battery with different technical characteristics. The proposed algorithm can also be used for optimal selection of size and type of battery for a smart home.

Effects of the Surface Coating Treatment of Cathode Materials on the Electrochemical Characteristics of Ni-MH Secondary Batteries (양극 활물질의 표면 코팅처리가 Ni-MH 2차 전지의 전기화학적 특성에 미치는 영향)

  • Kim, Byoung-Soub;Yang, Dong-Cheol;Park, Bong-Gi;Park, Choong-Nyeon;Park, Chan-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.495-503
    • /
    • 2011
  • The sealed nickel-metal hydride (Ni-MH) secondary battery are primarily used as energy storage for the HEV. But, the research on Ni-MH battery has focused on anode materials. In the present study, we investigate to improve the electrochemical characteristics of Ni-MH batteries using the surface treatment of $Ni(OH)_2$ cathode by CoOOH. Surface treated $Ni(OH)_2$ cathode showed significant improvement in the activation behavior, rate capability, charge retention, and cycle life of the batteries were significantly improved. In addition, the surface treated electrode exhibited the higher overvoltage for oxygen evolution than the untreated electrode. This phenomenon indicates that the charge efficiency can be improved by suppressing the oxygen evolution on cathode.

Analysis of the Power Supply System of a Maglev Train (자기부상열차의 급전시스템 검토)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.209-218
    • /
    • 2006
  • This paper presents the comparison and analysis of the power supply system of a Maglev train and conventional electric railway. Even though all Maglev trains have batteries on their vehicles, electric power supply from the ground side is necessary for levitation, propulsion, on-board electrical equipment, battery recharging, and so on. At low speeds up to $100{\sim}150(km/h)$, the Maglev train, generally, uses a mechanical contact, a current collector as same as conventional electric railway. However, at high speeds, the Maglev train can no longer obtain power from the ground side by using a mechanical contact. Therefore, high speed Maglev trains use their own way to deliver the power to the vehicle from the ground. In this paper, the power supply systems of the german, japanese, and korean low- and high-speed Maglev trains have been reviewed.

  • PDF

The Use of Computer Simulation in the Selfdischarge Evaluation of Ni/MH Battery for Electric Vehicle (전기자동차용 Ni/MH Battery의 자기방전율 평가를 위한 컴퓨터 시뮬레이션의 활용)

  • Jung Do Yang;Kim Myung Gyu;Park Seong Yong;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.53-57
    • /
    • 2001
  • When an EV is parked for a long period time, the battery capacity naturally decreases due to selfdischarge. Therefore, this effect must be considered for the accurate measurement of the state of charge of EV battery. Battery selfdischarge simulations using the design of experiments among computer simulation methods are compared with experimental data for Ni/MH batteries for electric vehicles. The motivation is to predict the selfdischarge rate of the battery for electric vehicle at all temperature conditions and standing time when electric vehicle could be operated. We developed a general equation representing the seudischarge rate of the electric vehicle battery using design of experiments, and the equation is determined by temperature and standing time of the battery. We selected Ni/MH battery, 12 V-95 Ah, for pure electric vehicle for this study. ID develop the equation using design of experiments we selected temperature range of $-20^{\circ}~30^{\circ}C$ and standing time of 1 day$\~15$ days. We conducted several selfdischarge tests of Ni/MH battery to verify the integrity of the equation. The results showed that the computation values were in good agreement with experimental data.

Effect of Harmonics and High-Frequency on OLEV System in Distribution Power System (온라인 전기자동차 시스템의 고조파 및 고주파가 배전계통에 미치는 영향에 관한 연구)

  • Choi, Seong-Ho;Huh, Jae-Sun;Han, Woon-Ki;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • Recently, various measures have been discussed for overcoming depletion of fossil fuels and environmental pollution. One of the measures is electric vehicles. But electric vehicles has some limitations from high cost of battery and low efficiency, so operation distance of electric cars is limited. Also there are difficulties that charging lines should be connected by an electric car whenever it charges. Thus, many studies have been conducted to overcome the limitation using conventional batteries of electric vehicles. As a result, the OLEV(On-Line Electric Vehicle) was developed. But the OLEV system is some limitations. The OLEV system causes power quality problems when it charges. Power quality problem cannot be ignored because OLEV systems are closely connected by distribution grids. In this paper, the OLEV system is designed by using PSCAD/EMTDC, and the power quality is measured and evaluated. Power quality is divided by two cases; harmonics and high-frequency. Harmonics were evaluated according to IEEE Std. 519-1992. But the evaluation of High-frequency could not take it because there was no standard. For this reason, the data measured by OLEV system was compared with the EN50065 regulation.

Analysis of the Effects of Recycling and Reuse of Used Electric Vehicle Batteries in Korea (한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구)

  • Yujeong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • According to the IEA (2022), global rechargeable battery demand is expected to reach 1.3 TWh in 2040. EV batteries will account for about 80% of this demand, and used EV batteries are expected to be discharged after 30 years. Used EV batteries can be recycled and reused to create new value. They can also resolve one of the most vulnerable parts of the battery supply chain: raw material insecurity. In this study, we analyzed the amount of used batteries generated by EV in Korea and their potential for reuse and recycling. As a result, it was estimated that the annual generation of used batteries for EV began to increase to more than 100,000 in '31 and expanded to 810,000 in '45. In addition, it was found that the market for recycling EV batteries in '45 could be expected to be equivalent to the production of 1 million batteries, and the market for reuse could be expected to be equivalent to the production of 36 Gwh of batteries. On the other hand, according to the plan standard disclosed by the recycling company, domestic used EV batteries can account for 11% of the domestic recycling processing capacity (pre-treatment) ('30). So it will be important to manage the import and export of used batteries in terms of securing raw materials.

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios (전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험)

  • Sim, Kyuho;Park, Jisu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.