DOI QR코드

DOI QR Code

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios

전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험

  • Sim, Kyuho (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Sci. & Tech) ;
  • Park, Jisu (Dept. of Mechanical System Design Engineering, Seoul Nat'l Univ. of Sci. & Tech)
  • 심규호 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 박지수 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2014.11.18
  • Accepted : 2015.01.17
  • Published : 2015.04.01

Abstract

Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

전기자동차 레인지 익스텐더는 소형 엔진으로 구동되는 발전기 시스템(초소형 파워팩)으로서 자동차 운행 중 지속 충전을 통하여 운전 거리 및 시간을 연장한다. 기존 가솔린 엔진 파워팩은 복잡한 구조와 낮은 에너지 밀도로 인하여 고출력 소형 시스템 구현에 한계가 있다. 반면, 가스터빈 파워팩은 출력밀도가 매우 높고 고속화를 통해 시스템의 소형화가 가능하다. 본 연구에서는 전기자동차 레인지 익스텐더로 활용하기 위하여 초소형 가스터빈, 자동차용 알터네이터, 배터리를 사용한 초소형 가스터빈 파워팩 실험장치를 개발하고, 무부하 및 부하 조건에서 동력전달 기어비 및 알터네이터 전기부하에 따른 운전 특성 및 발전 성능을 측정하였다. 실험 결과, 부하 변화에 따른 발전 성능의 변화는 없었으며, 코어터빈 속도가 150 krpm 일 때 최대 전기적 출력은 0.8 kW 로 측정되었다. 또한, 동력축의 3:1 감속을 통해 전기적 출력은 1.5 kW 로 88% 증가하였다. 따라서, 본 연구의 초소형 가스터빈 파워팩은 배터리 부하변동에 대해 안정적인 전력생산이 가능하며, 전기자동차용 레인지 익스텐더로 적용가능함을 확인하였다.

Keywords

References

  1. Wu, J., Emadi, A., Duoba, MJ. and Bohn, TP., 2007, "Plug-in Hybrid Electric Vehicles: Testing, Simulations, and Analysis," Vehicle Power Propulsion Conference, pp. 469-476.
  2. General Motors, http://www.chevrolet.com/volt-electric-car.html , accessed on Nov. 10, 2014.
  3. BMW Corporation, http://www.bmw.com/com/en/newvehicles/i/i3/2013/showroom/technical_data.html, accessed on Nov. 10, 2014.
  4. Boyce, MP., 2006, "Gas Turbine Engineering Handbook I," 3rd, Gulf Professional Publishing, Boston, pp. 24-25.
  5. HIL Tech Developments Limited, 2000, The Use of Micro Gas Turbines in Hybrid Electric Vehicles: http://www.bioturbine.org/Publications/PDF/microturbine-01-HILTECH.pdf , accessed on Nov. 10, 2014.
  6. Capstone Turbine Corporation, http://www.microturbine.com/news/story.asp?id=460, accessed on Nov. 10, 2014.
  7. Capstone Turbine Corporation, http://www.green-energy-news.com/nwslnks/clips308/mar08009.html, accessed on Nov. 5, 2014.
  8. Kim, J., Kim, S., Sun, J., Kim, S. and Kang, D., 2013, "Generator Output of Range Extended EV," KSAE conference, pp. 1871-1878.
  9. Sim, K., Koo, B., Kim, C. H. and Kim, T. H., 2013, "Development and Performance Measurement of Micropower Pack Using Micro-gas Turbine Driven Automotive Alternators," Applied Energy, Vol. 102, pp. 309-319. https://doi.org/10.1016/j.apenergy.2012.07.014
  10. JETCAT, Instruction manual for SPT5, http://www.jetcat.de/downloads/spt5englisch230206.pdf, accessed on Nov. 12, 2014.
  11. Remy international INC, 2008, Improving Alternator Efficiency Measurably Reduces Fuel Costs: http://delcoremy.com/Documents/High-Efficiency-White-Paper.aspx.
  12. Xu, M. and Marangoni, RD., 1994, "Vibration Analysis of a Motor-flexible Coupling-rotor System Subject to Misalignment and Unbalance, Part I: Theoretical Model and Analysis," J Sound Vib, Vol. 176, pp. 663-679. https://doi.org/10.1006/jsvi.1994.1405
  13. Imai, K., Ashida, T., Zhang, Y., and Minami, S., 2008, "Theoretical Performance of EV Range Extender Compared with Plugin Hybrid," Journal of Asian Electric Vehicles, Vol. 6, pp. 1181-1184. https://doi.org/10.4130/jaev.6.1181
  14. Pilavachi, P.A., 2002, "Mini- and Micro-gas Turbines for Combined Heat and Power," Applied Thermal Engineering, Vol. 22, pp. 2003-2014. https://doi.org/10.1016/S1359-4311(02)00132-1
  15. Park, C. H., Choi, S. K. and Ham, S. Y., 2011, "Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses," Journal of Fluid Machinery, Vol. 14, No. 5, pp. 25-30.
  16. Shah, R. M. B. R. A., McGordon, A., Amor-Segan, M. and Jennings, P. A., 2013, "Micro Gas Turbine Range Extender : Validation Techniques for Automotive Applications," 4th Hybrid Electric Vehicle Conference.